Spatial noise and threshold contrasts in LCD displays

Hans Roehrig, Elizabeth A. Krupinski, Amarpreet S. Chawla, Jiahua Fan, Kunal Gandhi

Research output: Contribution to journalConference articlepeer-review

14 Scopus citations

Abstract

This paper presents the results of initial physical and psycho-physical evaluations of the noise of high resolution LCDs. 5 LCDs were involved, having 4 different pixel structures. Spatial as well as temporal noise was physically measured with the aid of a high-performance CCD camera. Human contrast sensitivity in the presence of spatial noise was determined psycho-physically using periodic stimuli (square-wave patterns) as well as aperiodic stimuli (squares). For the measurements of the human contrast sensitivity, all LCDs were calibrated to the DICOM 14 Grayscale Standard Display Function (GSDF). The results demonstrate that spatial noise is the dominant noise in all LCDs, while temporal noise is insignificant and plays only a minor part. The magnitude of spatial noise of LCDs is in the range between that of CRTs with a P104 and that of CRTs with a P45. Of particular importance with respect to LCD noise is the contribution of the pixel structure to the Noise Power Spectrum, which shows up as sharp spikes at spatial frequencies beyond the LCDs' Nyquist frequency. The paper does not offer any clues about the importance of these spikes on the human contrast sensitivity.

Original languageEnglish (US)
Pages (from-to)174-186
Number of pages13
JournalProceedings of SPIE - The International Society for Optical Engineering
Volume5034
DOIs
StatePublished - 2003
EventMedical Imaging 2003: Image Perception, Observer Performance, and Technology Assessment - San Diego, CA, United States
Duration: Feb 18 2003Feb 20 2003

Keywords

  • CCD camera
  • JND
  • LCD
  • Spatial noise

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Spatial noise and threshold contrasts in LCD displays'. Together they form a unique fingerprint.

Cite this