Sparse wavefront control: A new approach to high-contrast imaging

Eduardo Bendek, Dan Sirbu, Christopher Henze, Ruslan Belikov, Thomas Milster, Emily Finan, Eugene Pluzhnik

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations


Current high-contrast imaging systems implement wavefront control using traditional deformable mirrors developed for atmospheric turbulence correction, which require large strokes, high-speed, and continuous phase correction. However, high-contrast imaging has different requirements. Thus, developing a specialized deformable mirror for this application able to meet the demanding requirements of future exoplanet imaging flagship missions is valuable for the exoplanet scientific community. In this paper, we propose a novel wavefront control approach, called Sparse Wave-Front Control (SWFC), which enables high-contrast imaging using sparse phase changes on the active surface re-directing coherent starlight to null speckles. To validate SWFC, we simulated a telescope equipped with a Phase Induced Amplitude Apodization (PIAA) coronagraph and a 100 by 100 actuator sparse Deformable Mirror to null speckles caused by the optical system aberrations. We modeled the mirror as a flat surface where narrow gaussian influence functions represent actuators. We performed wavefront control utilizing Electric Field Conjugation achieving 6.7e-11 mean contrast between 3 to 35λ/D in monochromatic light and 7.4e-11 in 10% broadband light. In the second part of this paper, we propose an approach to manufacture Sparse Deformable Mirrors utilizing photosensitive polymers, which could be placed below the mirror coating and can be photonically actuated by back illumination through the mirror substrate.

Original languageEnglish (US)
Title of host publicationSpace Telescopes and Instrumentation 2018
Subtitle of host publicationOptical, Infrared, and Millimeter Wave
EditorsGiovanni G. Fazio, Howard A. MacEwen, Makenzie Lystrup
ISBN (Print)9781510619494
StatePublished - 2018
EventSpace Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave - Austin, United States
Duration: Jun 10 2018Jun 15 2018

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X


OtherSpace Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave
Country/TerritoryUnited States


  • Coronagraphs
  • Deformable Mirror
  • Exoplanet Imaging
  • Wavefront control

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'Sparse wavefront control: A new approach to high-contrast imaging'. Together they form a unique fingerprint.

Cite this