TY - JOUR
T1 - Solution and thin-film aggregation studies of octasubstituted dendritic phthalocyanines
AU - Kernag, Casey
AU - McGrath, Dominic
PY - 2009/1/1
Y1 - 2009/1/1
N2 - The synthesis and solution and thin-film characterization of eight octasubstituted dendritic phthalocyanines (Pcs) and their zinc complexes are reported. The Pc chromophore was substituted in the 2,3,9,10,16,17,23,24- positions with three generations of benzylaryl ether dendrons with either a benzyl (3a-3c) or 3,5-di-t-butylbenzyl periphery (3d-3f). Visible spectra in solution (CH2Cl2-EtOH mixtures, toluene, THF, dioxane, acetone, and EtOAc) indicated a varying degree of chromophore aggregation that depended on solvent, dendrimer generation, and whether the Pc was metallated. Variable-concentration visible spectroscopic studies were analyzed using a nonlinear least-squares fitting procedure giving Kd values. These values further quantitated the observations that the t-butyl-substituted dendrimers 3d-3f were all less prone to aggregation in solution than the unsubstituted dendrimers 3a-3c, with a monotonic decrease in Kd across the series 3a → 3b → 3c → 3d → 3e → 3f. Second-generation t-butyl-substituted dendrimer 3f showed little to no aggregation in all solvents studied. Thin-film studies indicated that the largest members of the two dendrimer groups, third-generation 3c and second-generation 3f, were largely monomeric as evidenced by split Q-bands, similar to that seen in dilute CH2Cl2 solution when deposited via spin-coating onto glass slides. The metallated zinc Pcs 4a-4f all exhibited significantly less tendency toward aggregation in both solution and thin-films than their unmetallated analogues.
AB - The synthesis and solution and thin-film characterization of eight octasubstituted dendritic phthalocyanines (Pcs) and their zinc complexes are reported. The Pc chromophore was substituted in the 2,3,9,10,16,17,23,24- positions with three generations of benzylaryl ether dendrons with either a benzyl (3a-3c) or 3,5-di-t-butylbenzyl periphery (3d-3f). Visible spectra in solution (CH2Cl2-EtOH mixtures, toluene, THF, dioxane, acetone, and EtOAc) indicated a varying degree of chromophore aggregation that depended on solvent, dendrimer generation, and whether the Pc was metallated. Variable-concentration visible spectroscopic studies were analyzed using a nonlinear least-squares fitting procedure giving Kd values. These values further quantitated the observations that the t-butyl-substituted dendrimers 3d-3f were all less prone to aggregation in solution than the unsubstituted dendrimers 3a-3c, with a monotonic decrease in Kd across the series 3a → 3b → 3c → 3d → 3e → 3f. Second-generation t-butyl-substituted dendrimer 3f showed little to no aggregation in all solvents studied. Thin-film studies indicated that the largest members of the two dendrimer groups, third-generation 3c and second-generation 3f, were largely monomeric as evidenced by split Q-bands, similar to that seen in dilute CH2Cl2 solution when deposited via spin-coating onto glass slides. The metallated zinc Pcs 4a-4f all exhibited significantly less tendency toward aggregation in both solution and thin-films than their unmetallated analogues.
UR - http://www.scopus.com/inward/record.url?scp=67650070643&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67650070643&partnerID=8YFLogxK
U2 - 10.1560/IJC.49.1.9
DO - 10.1560/IJC.49.1.9
M3 - Article
AN - SCOPUS:67650070643
SN - 0021-2148
VL - 49
SP - 9
EP - 21
JO - Israel Journal of Chemistry
JF - Israel Journal of Chemistry
IS - 1
ER -