Solid-state fluorosopic imager for high-resolution angiography: Physical characteristics of an 8 cmx8 cm experimental prototype

Srinivasan Vedantham, Andrew Karellas, Sankararaman Suryanarayanan, Steven K. Onishi

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


In this paper, the performance of an 8 cmx8 cm three-side buttable charge-coupled device (CCD)-based imager specially designed for high-resolution fluoroscopy and operating in fluoroscopic (30 frames/second) mode is presented in terms of the presampling modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). The 8 cmx8 cm CCD imager is coupled to a 450μm thick CsI:T1 scintillator by nondemagnifying (straight, 1:1) fiberoptics. The CCD imager has a fundamental pixel pitch of 39/¿m 39 Am and incorporates an optically opaque interline (data) channel. The CCD imager was operated at 156 μm pixel pitch by binning 4x4 adjacent pixels prior to readout. The fluoroscopic image lag was measured and accounted for in the DQE estimate to provide lag-corrected DQE. The measured limiting spatial resolution at 10% presampling MTF with the imager operated at 156 μm pixel pitch (Nyquist sampling limit: 3.21 cy/mm) was 3.6 cy/mm. In the pulsed fluoroscopic mode, the first-frame image lag was less than 0.9%. The lag-corrected DQE(0) of ∼0.62 was achieved even at a low fluoroscopic exposure rate of 1 μR/frame. Grid phantom measurements indicate no appreciable distortion. Results from DQE and image lag measurements at fluoroscopic exposure rates combined with the high spatial resolution observed from the MTF suggest that this type of imager or its variants may be a potential candidate for high-resolution neuro-interventional imaging, cardiovascular imaging, pediatric angiography, and small animal imaging. Since the CCD is three-side buttable, four such CCD modules can be joined to form a 2x2 matrix providing a field of view of 16 cmx 16 cm.

Original languageEnglish (US)
Pages (from-to)1462-1472
Number of pages11
JournalMedical physics
Issue number6
StatePublished - Jun 2004


  • Angiography
  • Charge-coupled devices (CCD)
  • Detective quantum efficiency (DQE)
  • Fluoroscopy
  • Presampling modulation transfer function (MTF)

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Solid-state fluorosopic imager for high-resolution angiography: Physical characteristics of an 8 cmx8 cm experimental prototype'. Together they form a unique fingerprint.

Cite this