TY - JOUR
T1 - Social context-dependent singing alters molecular markers of synaptic plasticity signaling in finch basal ganglia Area X
AU - So, Lisa Y.
AU - Miller, Julie E.
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/2/1
Y1 - 2021/2/1
N2 - Vocal communication is a crucial skill required throughout life. However, there is a critical gap in our understanding of the underlying molecular brain mechanisms, thereby motivating our use of the zebra finch songbird model. Adult male zebra finches show differences in neural activity patterns in song-dedicated brain nuclei when they sing in two distinct social contexts: a male singing by himself (undirected, UD) and a male singing to a female (female-directed, FD). In our prior work, we showed that in song-dedicated basal ganglia Area X, protein levels of a N-methyl-D-aspartate receptor subtype 2B (NMDAR2B) increased with more UD song and decreased with more FD song. We hypothesized that molecules downstream of this receptor would show differential protein expression levels in Area X between UD and FD song. Specifically, we investigated calcium/calmodulin dependent protein kinase II beta (CaMKIIB), homer scaffold protein 1 (HOMER1), serine/threonine protein kinase (Akt), and mechanistic target of rapamycin kinase (mTOR) following singing and non-singing states in Area X. We show relationships between social context and protein levels. HOMER1 protein levels decreased with time spent singing FD song, and mTOR protein levels decreased with the amount of and time spent singing FD song. For both HOMER1 and mTOR, there were no differences with the amount of UD song. With time spent singing UD, CaMKIIB protein levels trended in a U-shaped curve whereas Akt protein levels trended down. Both molecules showed no change with FD song. Our results support differential involvement of molecules in synaptic plasticity pathways between UD and FD song behaviors.
AB - Vocal communication is a crucial skill required throughout life. However, there is a critical gap in our understanding of the underlying molecular brain mechanisms, thereby motivating our use of the zebra finch songbird model. Adult male zebra finches show differences in neural activity patterns in song-dedicated brain nuclei when they sing in two distinct social contexts: a male singing by himself (undirected, UD) and a male singing to a female (female-directed, FD). In our prior work, we showed that in song-dedicated basal ganglia Area X, protein levels of a N-methyl-D-aspartate receptor subtype 2B (NMDAR2B) increased with more UD song and decreased with more FD song. We hypothesized that molecules downstream of this receptor would show differential protein expression levels in Area X between UD and FD song. Specifically, we investigated calcium/calmodulin dependent protein kinase II beta (CaMKIIB), homer scaffold protein 1 (HOMER1), serine/threonine protein kinase (Akt), and mechanistic target of rapamycin kinase (mTOR) following singing and non-singing states in Area X. We show relationships between social context and protein levels. HOMER1 protein levels decreased with time spent singing FD song, and mTOR protein levels decreased with the amount of and time spent singing FD song. For both HOMER1 and mTOR, there were no differences with the amount of UD song. With time spent singing UD, CaMKIIB protein levels trended in a U-shaped curve whereas Akt protein levels trended down. Both molecules showed no change with FD song. Our results support differential involvement of molecules in synaptic plasticity pathways between UD and FD song behaviors.
KW - Basal ganglia
KW - Social context
KW - Synaptic plasticity
KW - Zebra finch
UR - http://www.scopus.com/inward/record.url?scp=85092605055&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85092605055&partnerID=8YFLogxK
U2 - 10.1016/j.bbr.2020.112955
DO - 10.1016/j.bbr.2020.112955
M3 - Article
C2 - 33031871
AN - SCOPUS:85092605055
SN - 0166-4328
VL - 398
JO - Behavioural Brain Research
JF - Behavioural Brain Research
M1 - 112955
ER -