Smart finite state devices: A modeling framework for demand response technologies

Konstantin Turitsyn, Scott Backhaus, Maxim Ananyev, Michael Chertkov

Research output: Chapter in Book/Report/Conference proceedingConference contribution

21 Scopus citations

Abstract

We introduce and analyze Markov Decision Process (MDP) machines to model individual devices which are expected to participate in future demand-response markets on distribution grids. We differentiate devices into the following four types: (a) optional loads that can be shed, e.g. light dimming; (b) deferrable loads that can be delayed, e.g. dishwashers; (c) controllable loads with inertia, e.g. thermostatically-controlled loads, whose task is to maintain an auxiliary characteristic (temperature) within pre-defined margins; and (d) storage devices that can alternate between charging and generating. Our analysis of the devices seeks to find their optimal price-taking control strategy under a given stochastic model of the distribution market.

Original languageEnglish (US)
Title of host publication2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages7-14
Number of pages8
ISBN (Print)9781612848006
DOIs
StatePublished - 2011
Externally publishedYes
Event2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011 - Orlando, FL, United States
Duration: Dec 12 2011Dec 15 2011

Publication series

NameProceedings of the IEEE Conference on Decision and Control
ISSN (Print)0743-1546
ISSN (Electronic)2576-2370

Other

Other2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
Country/TerritoryUnited States
CityOrlando, FL
Period12/12/1112/15/11

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Modeling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Smart finite state devices: A modeling framework for demand response technologies'. Together they form a unique fingerprint.

Cite this