Abstract
Plasmonic nanoparticles have been the focus of much interest in recent years, especially core-shell particles that pair a negative permittivity material with a dielectric layer to promote tunability of the resulting plasmon resonances. Nearly all nanoparticle designs have been considered in the optical regime where metals provide readily available negative permittivities, but where high-index dielectrics are uncommon. By moving to the infrared regime, high-index dielectrics can be used, which allow a greater variety of core-shell designs by admitting the appearance of magnetic resonances. By properly designing a core-shell nanoparticle to engineer the simultaneous excitation of both the magnetic and electric resonances with appropriate amplitudes, highly resonant particles with minimal backscattering can be achieved. Configurations that integrate these minimal backscattering designs with interfaces lead to potential thermal emission control surfaces.
Original language | English (US) |
---|---|
Article number | 6353121 |
Journal | IEEE Journal on Selected Topics in Quantum Electronics |
Volume | 19 |
Issue number | 3 |
DOIs | |
State | Published - 2013 |
Keywords
- Electromagnetic scattering
- infrared metamaterials
- nanostructured materials
- plasmonics
- polaritonic materials
- thermal engineering
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics
- Electrical and Electronic Engineering