Abstract
The Anatolian Plate is composed of different lithospheric blocks and ribbon continents amalgamated during the closure of the Paleotethys Ocean and Neotethys Ocean along a subduction margin. Using ambient noise tomography, we investigate the crustal and uppermost mantle shear wave velocity structure of the Anatolian Plate. A total of 215 broad-band seismic stations were used spanning 7 yr of recording to compute 13 778 cross-correlations and obtain Rayleigh wave dispersion measurements for periods between 8 and 40 s. We then perform a shear wave inversion to calculate the seismic velocity structure of the crust and uppermost mantle. Our results show that the overall crustal shear wave velocities of the Anatolian crust are low (~3.4 kms-1), indicative of a felsic overall composition.We find that prominent lateral seismic velocity gradients correlate with Tethyan suture zones, supporting the idea that the neotectonic structures of Turkey are exploiting the lithospheric weaknesses associated with the amalgamation of Anatolia. Anomalously slow shear wave velocities (~3.15 km s-1 at 25 km) are located in the western limb of the Isparta Angle in southwestern Turkey. In the upper crust, we find that these low shear wave velocities correlate well with the projected location of a carbonate platform unit (Bey Dağlari) beneath the Lycian Nappe complex. In the lower crust and upper mantle of this region, we propose that the anomalously slow velocities are due to the introduction of aqueous fluids related to the underplating of accretionary material from the underthrusting of a buoyant, attenuated continental fragment similar to the Eratosthenes seamount.We suggest that this fragment controlled the location of the formation of the Subduction-Transform Edge Propagator fault in the eastern Aegean Sea during rapid slab rollback of the Aegean Arc in early Miocene times. Lastly, we observe that the uppermost mantle beneath continental Anatolia is generally slow (~4.2 km s-1), indicating higher than usual temperatures consistent with the influx of asthenosphere to shallow depths as a result of the segmentation and break-up of the subducting African lithosphere.
Original language | English (US) |
---|---|
Pages (from-to) | 261-276 |
Number of pages | 16 |
Journal | Geophysical Journal International |
Volume | 202 |
Issue number | 1 |
DOIs | |
State | Published - Jul 1 2015 |
Keywords
- Continental neotectonics
- Crustal structure
- Intra-plate processes
- Seismic tomography
- Surface waves and free oscillations
ASJC Scopus subject areas
- Geophysics
- Geochemistry and Petrology