TY - JOUR
T1 - Sequential oxidation and glutathione addition to 1,4-benzoquinone
T2 - Correlation of toxicity with increased glutathione substitution
AU - Lau, S. S.
AU - Hill, B. A.
AU - Highet, R. J.
AU - Monks, T. J.
PY - 1988
Y1 - 1988
N2 - The chemical reaction of 1,4-benzoquinone with glutathione results in the formation of adducts that exhibit increasing degrees of glutathione substitution. Purification of these adducts and analysis by 1H and 13C nuclear magnetic resonance spectroscopy revealed the products of the reaction to be 2-(glutathion-S-yl)hydroquinone; 2,3-(diglutathion-S-yl)hydroquinone; 2,5-(diglutathion-S-yl)hydroquinone;2,6(diglutathion-S-yl)hydroquinon ;2,3,5-(triglutathion-S-yl)hydroquinone; and 2,3,5,6-(tetraglutatathion-S-yl)hydroquinone. The initial conjugation of 1,4-benzoquinone with glutathione did not significantly affect the oxidation potential of the compound. However, subsequent oxidation and glutathione addition resulted in the formation of conjugates that, dependent upon the position of addition, become increasingly more difficult to oxidize. Increased glutathione substitutions, which resulted in an increase in oxidation potentials, paradoxically resulted in enhanced nephrotoxicity. The triglutathion-S-yl conjugate was the most potent nephrotoxicant; the diglutathion-S-yl exhibited similar degrees of nephrotoxicity; the mono- and tetraglutathion-S-yl conjugates conjugates were not toxic. Thus, with the exception of the fully substituted isomer, the severity of renal necrosis correlated with the extent of glutathione substitution. The lack of toxicity of the fully substituted isomer is probably a consequence of its inability of alkylate tissue components. Thus, the conjugation of glutathione with quinones does not necessarily result in detoxification, even when the resulting conjugates are more stable to oxidation. The inhibition of γ-glutamyl transpeptidase by AT-125 protected against 2,3,5-(triglutathion-S-yl)hydroquinone-mediated nephrotoxicity. It is suggested that other extra-renal sites expressing relatively high levels of γ-glutamyl transpeptidase might therefore also be susceptible to hydroquinone-linked glutathione conjugate toxicity. This pathway might also contribute to the carcinogenicity and mutagenicity of certain quinones.
AB - The chemical reaction of 1,4-benzoquinone with glutathione results in the formation of adducts that exhibit increasing degrees of glutathione substitution. Purification of these adducts and analysis by 1H and 13C nuclear magnetic resonance spectroscopy revealed the products of the reaction to be 2-(glutathion-S-yl)hydroquinone; 2,3-(diglutathion-S-yl)hydroquinone; 2,5-(diglutathion-S-yl)hydroquinone;2,6(diglutathion-S-yl)hydroquinon ;2,3,5-(triglutathion-S-yl)hydroquinone; and 2,3,5,6-(tetraglutatathion-S-yl)hydroquinone. The initial conjugation of 1,4-benzoquinone with glutathione did not significantly affect the oxidation potential of the compound. However, subsequent oxidation and glutathione addition resulted in the formation of conjugates that, dependent upon the position of addition, become increasingly more difficult to oxidize. Increased glutathione substitutions, which resulted in an increase in oxidation potentials, paradoxically resulted in enhanced nephrotoxicity. The triglutathion-S-yl conjugate was the most potent nephrotoxicant; the diglutathion-S-yl exhibited similar degrees of nephrotoxicity; the mono- and tetraglutathion-S-yl conjugates conjugates were not toxic. Thus, with the exception of the fully substituted isomer, the severity of renal necrosis correlated with the extent of glutathione substitution. The lack of toxicity of the fully substituted isomer is probably a consequence of its inability of alkylate tissue components. Thus, the conjugation of glutathione with quinones does not necessarily result in detoxification, even when the resulting conjugates are more stable to oxidation. The inhibition of γ-glutamyl transpeptidase by AT-125 protected against 2,3,5-(triglutathion-S-yl)hydroquinone-mediated nephrotoxicity. It is suggested that other extra-renal sites expressing relatively high levels of γ-glutamyl transpeptidase might therefore also be susceptible to hydroquinone-linked glutathione conjugate toxicity. This pathway might also contribute to the carcinogenicity and mutagenicity of certain quinones.
UR - http://www.scopus.com/inward/record.url?scp=0024237151&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0024237151&partnerID=8YFLogxK
M3 - Article
C2 - 3200250
AN - SCOPUS:0024237151
SN - 0026-895X
VL - 34
SP - 829
EP - 836
JO - Molecular Pharmacology
JF - Molecular Pharmacology
IS - 6
ER -