TY - JOUR
T1 - Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry
AU - Tfaily, Malak M.
AU - Chu, Rosalie K.
AU - Toyoda, Jason
AU - Tolić, Nikola
AU - Robinson, Errol W.
AU - Paša-Tolić, Ljiljana
AU - Hess, Nancy J.
N1 - Publisher Copyright:
© 2017 Elsevier B.V.
PY - 2017/6/15
Y1 - 2017/6/15
N2 - A vast number of organic compounds are present in soil organic matter (SOM) and play an important role in the terrestrial carbon cycle, facilitate interactions between organisms, and represent a sink for atmospheric CO2. The diversity of different SOM compounds and their molecular characteristics is a function of the organic source material and biogeochemical history. By understanding how SOM composition changes with sources and the processes by which it is biogeochemically altered in different terrestrial ecosystems, it may be possible to predict nutrient and carbon cycling, response to system perturbations, and impact of climate change will have on SOM composition. In this study, a sequential chemical extraction procedure was developed to reveal the diversity of organic matter (OM) in different ecosystems and was compared to the previously published protocol using parallel solvent extraction (PSE). We compared six extraction methods using three sample types, peat soil, spruce forest soil and river sediment, so as to select the best method for extracting a representative fraction of organic matter from soils and sediments from a wide range of ecosystems. We estimated the extraction yield of dissolved organic carbon (DOC) by total organic carbon analysis, and measured the composition of extracted OM using high resolution mass spectrometry. This study showed that OM composition depends primarily on soil and sediment characteristics. Two sequential extraction protocols, progressing from polar to non-polar solvents, were found to provide the highest number and diversity of organic compounds extracted from the soil and sediments. Water (H2O) is the first solvent used for both protocols followed by either co-extraction with methanol-chloroform (MeOH-CHCl3) mixture, or acetonitrile (ACN) and CHCl3 sequentially. The sequential extraction protocol developed in this study offers improved sensitivity, and requires less sample compared to the PSE workflow where a new sample is used for each solvent type. Furthermore, a comparison of SOM composition from the different sample types revealed that our sequential protocol allows for ecosystem comparisons based on the diversity of compounds present, which in turn could provide new insights about source and processing of organic compounds in different soil and sediment types.
AB - A vast number of organic compounds are present in soil organic matter (SOM) and play an important role in the terrestrial carbon cycle, facilitate interactions between organisms, and represent a sink for atmospheric CO2. The diversity of different SOM compounds and their molecular characteristics is a function of the organic source material and biogeochemical history. By understanding how SOM composition changes with sources and the processes by which it is biogeochemically altered in different terrestrial ecosystems, it may be possible to predict nutrient and carbon cycling, response to system perturbations, and impact of climate change will have on SOM composition. In this study, a sequential chemical extraction procedure was developed to reveal the diversity of organic matter (OM) in different ecosystems and was compared to the previously published protocol using parallel solvent extraction (PSE). We compared six extraction methods using three sample types, peat soil, spruce forest soil and river sediment, so as to select the best method for extracting a representative fraction of organic matter from soils and sediments from a wide range of ecosystems. We estimated the extraction yield of dissolved organic carbon (DOC) by total organic carbon analysis, and measured the composition of extracted OM using high resolution mass spectrometry. This study showed that OM composition depends primarily on soil and sediment characteristics. Two sequential extraction protocols, progressing from polar to non-polar solvents, were found to provide the highest number and diversity of organic compounds extracted from the soil and sediments. Water (H2O) is the first solvent used for both protocols followed by either co-extraction with methanol-chloroform (MeOH-CHCl3) mixture, or acetonitrile (ACN) and CHCl3 sequentially. The sequential extraction protocol developed in this study offers improved sensitivity, and requires less sample compared to the PSE workflow where a new sample is used for each solvent type. Furthermore, a comparison of SOM composition from the different sample types revealed that our sequential protocol allows for ecosystem comparisons based on the diversity of compounds present, which in turn could provide new insights about source and processing of organic compounds in different soil and sediment types.
KW - Carbon cycle
KW - Charge competition
KW - Ionization efficiency
KW - Mass spectrometry
KW - Sediments
KW - Soil organic matter
UR - http://www.scopus.com/inward/record.url?scp=85017160174&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85017160174&partnerID=8YFLogxK
U2 - 10.1016/j.aca.2017.03.031
DO - 10.1016/j.aca.2017.03.031
M3 - Article
C2 - 28495096
AN - SCOPUS:85017160174
SN - 0003-2670
VL - 972
SP - 54
EP - 61
JO - Analytica Chimica Acta
JF - Analytica Chimica Acta
ER -