Abstract
Mountain block systems are critical to water resources and have been heavily studied and modeled in recent decades. However, due to lack of field data, there is little consistency in how models represent the mountain block subsurface. While there is a large body of research on subsurface heterogeneity, few studies have evaluated the effect that common conceptual choices modelers make in mountainous systems have on simulated hydrology. Here we simulate the hydrology of a semi-idealized headwater catchment using six common conceptual models of the mountain block subsurface. These scenarios include multiple representations of hydraulic conductivity decaying with depth, changes in soil depth with topography, and anisotropy. We evaluate flow paths, discharge, and water tables to quantify the impact of subsurface conceptualization on hydrologic behavior in three dimensions. Our results show that adding higher conductivity layers in the shallow subsurface concentrates flow paths near the surface and increases average saturated flow path velocities. Increasing heterogeneity by adding additional layers or introducing anisotropy increases the variance in the relationship between the age and length of saturated flow paths. Discharge behavior is most sensitive to heterogeneity in the shallow subsurface layers. Water tables are less sensitive to layering than they are to the overall conductivity in the domain. Anisotropy restricts flow path depths and controls discharge from storage but has little effect on governing runoff. Differences in the response of discharge, water table depth, and residence time distribution to subsurface representation highlight the need to consider model applications when determining the level of complexity that is needed.
Original language | English (US) |
---|---|
Article number | e2020WR027714 |
Journal | Water Resources Research |
Volume | 56 |
Issue number | 10 |
DOIs | |
State | Published - Oct 1 2020 |
Keywords
- mountain hydrology
- numerical modeling
ASJC Scopus subject areas
- Water Science and Technology