TY - JOUR
T1 - Semi-transparent metal nanostructures as alternatives to transparent conducting oxides in organic photovoltaic devices
AU - Favela, Jacob I.
AU - Pemberton, Jeanne E.
PY - 2011
Y1 - 2011
N2 - Semi-transparent metallic, nanostructured, hole-selective contacts are intrinsically more conductive, more chemically stable, easier to modify, and significantly less costly than their transparent conductive oxide (TCO) counterparts traditionally used in organic photovoltaic (OPV) devices. In this work, gold nanowire, nanogrid and honeycomb nanostructures composed of a high work function materials were developed and explored as hole-selective contacts in OPVs. These structures show optical transparency and sheet resistance comparable to those of traditional TCOs that can be easily tuned by varying structure geometry, such as nanowire spacing or nanohole diameter. Results for power conversion efficiency and incident photon current efficiency (IPCE) will be reported for planar heterojunction OPV devices fabricated using these semi-transparent metallic nanostructures as hole-selective contacts and correlated to performance by conventional TCO based architectures.
AB - Semi-transparent metallic, nanostructured, hole-selective contacts are intrinsically more conductive, more chemically stable, easier to modify, and significantly less costly than their transparent conductive oxide (TCO) counterparts traditionally used in organic photovoltaic (OPV) devices. In this work, gold nanowire, nanogrid and honeycomb nanostructures composed of a high work function materials were developed and explored as hole-selective contacts in OPVs. These structures show optical transparency and sheet resistance comparable to those of traditional TCOs that can be easily tuned by varying structure geometry, such as nanowire spacing or nanohole diameter. Results for power conversion efficiency and incident photon current efficiency (IPCE) will be reported for planar heterojunction OPV devices fabricated using these semi-transparent metallic nanostructures as hole-selective contacts and correlated to performance by conventional TCO based architectures.
UR - http://www.scopus.com/inward/record.url?scp=80051912467&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80051912467&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:80051912467
SN - 0065-7727
JO - ACS National Meeting Book of Abstracts
JF - ACS National Meeting Book of Abstracts
T2 - 241st ACS National Meeting and Exposition
Y2 - 27 March 2011 through 31 March 2011
ER -