Self-field, radiated energy, and radiated linear momentum of an accelerated point charge: Part 2

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Working within the framework of the classical theory of electrodynamics, we derive an exact mathematical solution to the problem of self-force (or radiation reaction) of an accelerated point-charge traveling in free space. In addition to deriving relativistic expressions for self electromagnetic fields, we obtain exact formulas for the rates of radiated energy and linear momentum without the need to renormalize the particle's mass - or to discard undesirable infinities. The relativistic expression of self-force known as the Abraham- Lorentz-Dirac equation is derived in two different ways. Certain properties of the self-force are examined, and an approximate formula for the self-force, first proposed by Landau and Lifshitz, is discussed in some detail.

Original languageEnglish (US)
Title of host publicationQuantum Sensing and Nano Electronics and Photonics XVI
EditorsManijeh Razeghi, Jay S. Lewis, Eric Tournie, Giti A. Khodaparast
PublisherSPIE
ISBN (Electronic)9781510624948
DOIs
StatePublished - 2019
EventQuantum Sensing and Nano Electronics and Photonics XVI 2019 - San Francisco, United States
Duration: Feb 3 2019Feb 7 2019

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume10926
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceQuantum Sensing and Nano Electronics and Photonics XVI 2019
Country/TerritoryUnited States
CitySan Francisco
Period2/3/192/7/19

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Self-field, radiated energy, and radiated linear momentum of an accelerated point charge: Part 2'. Together they form a unique fingerprint.

Cite this