Self-adapting, self-optimizing runtime management of Grid applications using PRAGMA

H. Zhu, M. Parashar, J. Yang, Y. Zhang, S. Rao, S. Hariri

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

The emergence of the computational Grid and the potential for seamless aggregation, integration and interactions has made it possible to conceive a new generation of realistic, scientific and engineering simulations of complex physical phenomena. The inherently heterogeneous and dynamic nature of these application and the Grid presents significant runtime management challenges. In this paper we extend the PRAGMA framework to enable self adapting, self optimizing runtime management of dynamically adaptive applications. Specifically, we present the design, prototype implementation and initial evaluation of policies and mechanisms that enable PRAGMA to autonomically manage, adapt and optimize structured adaptive mesh refinement applications (SAMR) based on current system and application state and predictive models for system behavior and application performance. We use the 3-D adaptive Richtmyer-Meshkov compressible fluid dynamics application and Beowulf clusters at Rutgers University, University of Arizona, and NERSC to develop our performance models, and define and evaluate our adaptation policies. In our prototype, the predictive performance models capture computational and communicational loads and, along with current system state, adjust processors capacities at runtime to enable the application to adapt and optimize its performance.

Original languageEnglish (US)
Title of host publicationProceedings - International Parallel and Distributed Processing Symposium, IPDPS 2003
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)0769519261, 9780769519265
DOIs
StatePublished - 2003
EventInternational Parallel and Distributed Processing Symposium, IPDPS 2003 - Nice, France
Duration: Apr 22 2003Apr 26 2003

Publication series

NameProceedings - International Parallel and Distributed Processing Symposium, IPDPS 2003

Other

OtherInternational Parallel and Distributed Processing Symposium, IPDPS 2003
Country/TerritoryFrance
CityNice
Period4/22/034/26/03

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Theoretical Computer Science
  • Software

Fingerprint

Dive into the research topics of 'Self-adapting, self-optimizing runtime management of Grid applications using PRAGMA'. Together they form a unique fingerprint.

Cite this