TY - JOUR
T1 - Selective estrogen receptor modulator delivery of quinone warheads to DNA triggering apoptosis in breast cancer cells
AU - Peng, Kuan Wei
AU - Wang, Huali
AU - Qin, Zhihui
AU - Wijewickrama, Gihani T.
AU - Lu, Meiling
AU - Wang, Zhican
AU - Bolton, Judy L.
AU - Thatcher, Gregory R.J.
PY - 2009/12/18
Y1 - 2009/12/18
N2 - Estrogen exposure is a risk factor for breast cancer, and estrogen oxidative metabolites have been implicated in chemical carcinogenesis. Oxidation of the catechol metabolite of estrone (4-OHE) and the β- naphthohydroquinone metabolite of equilenin (4-OHEN) gives o-quinones that produce ROS and damage DNA by adduction and oxidation. To differentiate hormonal and chemical carcinogensis pathways in estrogen receptor positive ER(+) cells, catechol or β-naphthohydroquinone warheads were conjugated to the selective estrogen receptor modulator (SERM) desmethylarzoxifene (DMA). ER binding was retained in the DMA conjugates; both were antiestrogens with submicromolar potency in mammary and endometrial cells. Cytotoxicity, apoptosis, and caspase-3/7 activation were compared in ER(+) and ER(-)MDA-MB-231 cells, and production of ROS was detected using a fluorescent reporter. Comparison was made to DMA, isolated warheads, and a DMA-mustard. Conjugation of warheads to DMA increased cytotoxicity accompanied by induction of apoptosis and activation of caspase-3/7. Activation of caspase-3/7, induction of apoptosis, and cytotoxicity were all increased significantly in ER(+) cells for the DMA conjugates. ROS production was localized in the nucleus for conjugates in ER(+) cells. Observations are compatible with β-naphthohydroquinone and catechol groups being concentrated in the nucleus by ER binding, where oxidation and ROS production result, concomitant with caspase-dependent apoptosis. The results suggest that DNA damage induced by catechol estrogen metabolites can be amplified in ER(+) cells independent of hormonal activity. The novel conjugation of quinone warheads to an ER-targeting SERM gives ER-dependent, enhanced apoptosis in mammary cancer cells of potential application in cancer therapy.
AB - Estrogen exposure is a risk factor for breast cancer, and estrogen oxidative metabolites have been implicated in chemical carcinogenesis. Oxidation of the catechol metabolite of estrone (4-OHE) and the β- naphthohydroquinone metabolite of equilenin (4-OHEN) gives o-quinones that produce ROS and damage DNA by adduction and oxidation. To differentiate hormonal and chemical carcinogensis pathways in estrogen receptor positive ER(+) cells, catechol or β-naphthohydroquinone warheads were conjugated to the selective estrogen receptor modulator (SERM) desmethylarzoxifene (DMA). ER binding was retained in the DMA conjugates; both were antiestrogens with submicromolar potency in mammary and endometrial cells. Cytotoxicity, apoptosis, and caspase-3/7 activation were compared in ER(+) and ER(-)MDA-MB-231 cells, and production of ROS was detected using a fluorescent reporter. Comparison was made to DMA, isolated warheads, and a DMA-mustard. Conjugation of warheads to DMA increased cytotoxicity accompanied by induction of apoptosis and activation of caspase-3/7. Activation of caspase-3/7, induction of apoptosis, and cytotoxicity were all increased significantly in ER(+) cells for the DMA conjugates. ROS production was localized in the nucleus for conjugates in ER(+) cells. Observations are compatible with β-naphthohydroquinone and catechol groups being concentrated in the nucleus by ER binding, where oxidation and ROS production result, concomitant with caspase-dependent apoptosis. The results suggest that DNA damage induced by catechol estrogen metabolites can be amplified in ER(+) cells independent of hormonal activity. The novel conjugation of quinone warheads to an ER-targeting SERM gives ER-dependent, enhanced apoptosis in mammary cancer cells of potential application in cancer therapy.
UR - http://www.scopus.com/inward/record.url?scp=73649134994&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=73649134994&partnerID=8YFLogxK
U2 - 10.1021/cb9001848
DO - 10.1021/cb9001848
M3 - Article
C2 - 19839584
AN - SCOPUS:73649134994
SN - 1554-8929
VL - 4
SP - 1039
EP - 1049
JO - ACS Chemical Biology
JF - ACS Chemical Biology
IS - 12
ER -