Secure regenerating codes for hybrid cloud storage systems

Islam Samy, Gokhan Calis, O. Ozan Koyluoglu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

We study the scenario of hybrid cloud storage where the client utilizes both an off-site and a local storage. The former is a distributed storage system (DSS) with the presence of an eavesdropper that has access to the content stored in and downloaded to some subset of nodes. The latter (local) storage is utilized to store a secret key to secure the stored file against the eavesdropper. We introduce two possibilities to utilize local storage (secret key) in enhancing the DSS. First, the key can be used to increase the maximum file size stored in the DSS. We propose an upper bound for this scenario and show constructions achieving it. Second, the key can be used to decrease the number of contacted nodes required to reconstruct the file at the client. We extend the product matrix (PM) framework and construct codes that enables efficient data access. Our analysis includes both minimum repair bandwidth regenerating (MBR) and minimum storage regenerating (MSR) codes.

Original languageEnglish (US)
Title of host publication2017 IEEE International Symposium on Information Theory, ISIT 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2208-2212
Number of pages5
ISBN (Electronic)9781509040964
DOIs
StatePublished - Aug 9 2017
Event2017 IEEE International Symposium on Information Theory, ISIT 2017 - Aachen, Germany
Duration: Jun 25 2017Jun 30 2017

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Other

Other2017 IEEE International Symposium on Information Theory, ISIT 2017
Country/TerritoryGermany
CityAachen
Period6/25/176/30/17

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Information Systems
  • Modeling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Secure regenerating codes for hybrid cloud storage systems'. Together they form a unique fingerprint.

Cite this