Abstract
We present new constraints on the ratio of black hole (BH) mass to total galaxy stellar mass at 0.3 < z < 0.9 for a sample of 32 type-1 active galactic nuclei (AGNs) from the XMM-COSMOS survey covering the range M BH 107.2 - 8.7 M⊙. Virial M BH estimates based on Hβ are available from the COSMOS Magellan/IMACS survey. We use high-resolution Hubble Space Telescope (HST) imaging to decompose the light of each type-1 AGN and host galaxy, and employ a specially built mass-to-light ratio to estimate the stellar masses (M *). The M BH-M * ratio shows a zero offset with respect to the local relation for galactic bulge masses, and we also find no evolution in the mass ratio M BH/M *(1 + z)0.02 0.34 up to z 0.9. Interestingly, at the high-M BH end there is a positive offset from the z = 0 relation, which can be fully explained by a mass function bias with a cosmic scatter of σμ = 0.3, reaffirming that the intrinsic distribution is consistent with zero evolution. From our results we conclude that since z 0.9 no substantial addition of stellar mass is required: the decline in star formation rates and merger activity at z < 1 support this scenario. Nevertheless, given that a significant fraction of these galaxies show a disk component, their bulges are indeed undermassive. This is a direct indication that for the last 7Gyr the only essential mechanism required for these galaxies to obey the z = 0 relation is a redistribution of stellar mass to the bulge, likely driven by secular processes, i.e., internal instabilities and minor merging.
Original language | English (US) |
---|---|
Article number | L11 |
Journal | Astrophysical Journal Letters |
Volume | 741 |
Issue number | 1 |
DOIs | |
State | Published - Nov 1 2011 |
Keywords
- galaxies: active
- galaxies: evolution
- galaxies: nuclei
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science