Scrambling and complexity in phase space

Quntao Zhuang, Thomas Schuster, Beni Yoshida, Norman Y. Yao

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

The study of information scrambling in many-body systems has sharpened our understanding of quantum chaos, complexity, and gravity. Here, we extend the framework for exploring information scrambling to infinite-dimensional continuous variable (CV) systems. Unlike their discrete variable cousins, continuous variable systems exhibit two complementary domains of information scrambling: (i) scrambling in the phase space of a single mode and (ii) scrambling across multiple modes of a many-body system. Moreover, for each of these domains, we identify two distinct types of scrambling; genuine scrambling, where an initial operator localized in phase space spreads out, and quasiscrambling, where a local ensemble of operators distorts but the overall phase space volume remains fixed. To characterize these behaviors, we introduce a CV out-of-time-order correlation (OTOC) function based upon displacement operators and offer a number of results regarding the CV analog for unitary designs. Finally, we investigate operator spreading and entanglement growth in random local Gaussian circuits; to explain the observed behavior, we propose a simple hydrodynamical model that relates the butterfly velocity, the growth exponent, and the diffusion constant. Experimental realizations of continuous variable scrambling as well as its characterization using CV OTOCs will be discussed.

Original languageEnglish (US)
Article number062334
JournalPhysical Review A
Volume99
Issue number6
DOIs
StatePublished - Jun 25 2019
Externally publishedYes

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Scrambling and complexity in phase space'. Together they form a unique fingerprint.

Cite this