TY - JOUR
T1 - Scrambling and complexity in phase space
AU - Zhuang, Quntao
AU - Schuster, Thomas
AU - Yoshida, Beni
AU - Yao, Norman Y.
N1 - Publisher Copyright:
© 2019 American Physical Society.
PY - 2019/6/25
Y1 - 2019/6/25
N2 - The study of information scrambling in many-body systems has sharpened our understanding of quantum chaos, complexity, and gravity. Here, we extend the framework for exploring information scrambling to infinite-dimensional continuous variable (CV) systems. Unlike their discrete variable cousins, continuous variable systems exhibit two complementary domains of information scrambling: (i) scrambling in the phase space of a single mode and (ii) scrambling across multiple modes of a many-body system. Moreover, for each of these domains, we identify two distinct types of scrambling; genuine scrambling, where an initial operator localized in phase space spreads out, and quasiscrambling, where a local ensemble of operators distorts but the overall phase space volume remains fixed. To characterize these behaviors, we introduce a CV out-of-time-order correlation (OTOC) function based upon displacement operators and offer a number of results regarding the CV analog for unitary designs. Finally, we investigate operator spreading and entanglement growth in random local Gaussian circuits; to explain the observed behavior, we propose a simple hydrodynamical model that relates the butterfly velocity, the growth exponent, and the diffusion constant. Experimental realizations of continuous variable scrambling as well as its characterization using CV OTOCs will be discussed.
AB - The study of information scrambling in many-body systems has sharpened our understanding of quantum chaos, complexity, and gravity. Here, we extend the framework for exploring information scrambling to infinite-dimensional continuous variable (CV) systems. Unlike their discrete variable cousins, continuous variable systems exhibit two complementary domains of information scrambling: (i) scrambling in the phase space of a single mode and (ii) scrambling across multiple modes of a many-body system. Moreover, for each of these domains, we identify two distinct types of scrambling; genuine scrambling, where an initial operator localized in phase space spreads out, and quasiscrambling, where a local ensemble of operators distorts but the overall phase space volume remains fixed. To characterize these behaviors, we introduce a CV out-of-time-order correlation (OTOC) function based upon displacement operators and offer a number of results regarding the CV analog for unitary designs. Finally, we investigate operator spreading and entanglement growth in random local Gaussian circuits; to explain the observed behavior, we propose a simple hydrodynamical model that relates the butterfly velocity, the growth exponent, and the diffusion constant. Experimental realizations of continuous variable scrambling as well as its characterization using CV OTOCs will be discussed.
UR - http://www.scopus.com/inward/record.url?scp=85068219009&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068219009&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.99.062334
DO - 10.1103/PhysRevA.99.062334
M3 - Article
AN - SCOPUS:85068219009
SN - 2469-9926
VL - 99
JO - Physical Review A
JF - Physical Review A
IS - 6
M1 - 062334
ER -