Scalable photonic-phonoinc integrated circuitry for reconfigurable signal processing

Liang Zhang, Chaohan Cui, Yongzhou Xue, Paokang Chen, Linran Fan

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The interaction between photons and phonons plays a crucial role in broad areas ranging from optical sources and modulators to quantum transduction and metrology. The performance can be further improved using integrated photonic-phononic devices, promising enhanced interaction strength and large-scale integration. While the enhanced interaction has been widely demonstrated, it is challenging to realize large-scale integrated photonic-phononic circuits due to material limitations. Here, we resolve this critical issue by using gallium nitride on sapphire for scalable photonic-phononic integrated circuits. Both optical and acoustic fields are confined in sub-wavelength scales without suspended structures. This enables us to achieve the efficient launching, flexible routing, and reconfigruable processing of optical and acoustic fields simultaneously. With the controlled photonic-phononic interaction and strong piezoelectric effect, we further demonstrate the reconfigurable conversion between frequency-multiplexed RF and optical signals mediated by acoustics. This work provides an ideal platform for achieving ultimate performance of photonic-phononic hybrid systems with high efficiency, multiple functions, and large scalability.

Original languageEnglish (US)
Article number2718
JournalNature communications
Volume16
Issue number1
DOIs
StatePublished - Dec 2025
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Scalable photonic-phonoinc integrated circuitry for reconfigurable signal processing'. Together they form a unique fingerprint.

Cite this