Saturn's icy satellites investigated by Cassini-VIMS. I. Full-disk properties: 350-5100 nm reflectance spectra and phase curves

G. Filacchione, F. Capaccioni, T. B. McCord, A. Coradini, P. Cerroni, G. Bellucci, F. Tosi, E. D'Aversa, V. Formisano, R. H. Brown, K. H. Baines, J. P. Bibring, B. J. Buratti, R. N. Clark, M. Combes, D. P. Cruikshank, P. Drossart, R. Jaumann, Y. Langevin, D. L. MatsonV. Mennella, R. M. Nelson, P. D. Nicholson, B. Sicardy, C. Sotin, G. Hansen, K. Hibbitts, M. Showalter, S. Newman

Research output: Contribution to journalArticlepeer-review

61 Scopus citations

Abstract

Saturn's icy satellites are among the main scientific objectives of the Cassini-VIMS (Visual and Infrared Mapping Spectrometer) experiment. This paper contains a first systematic and comparative analysis of the full-disk spectral properties of Dione, Enceladus, Epimetheus, Hyperion, Iapetus, Mimas, Phoebe, Rhea and Tethys as observed by VIMS from July 2004 to June 2005. The disk integrated properties (350-5100 nm reflectance spectra and phase curves at 550-2232 nm) and images of satellites are reported and discussed in detail together with the observed geometry. In general, the spectra in the visible spectral range are almost featureless and can be classified according to the spectral slopes: from the bluish Enceladus and Phoebe to the redder Iapetus, Hyperion and Epimetheus. In the 1000-1300 nm range the spectra of Enceladus, Tethys, Mimas and Rhea are characterized by a negative slope, consistent with a surface largely dominated by water ice, while the spectra of Iapetus, Hyperion and Phoebe show a considerable reddening pointing out the relevant role played by darkening materials present on the surface. In between these two classes are Dione and Epimetheus, which have a flat spectrum in this range. The main absorption bands identified in the infrared are the 1520, 2020, 3000 nm H2O/OH bands (for all satellites), although Iapetus dark terrains show mostly a deep 3000 nm band while the 1520 and 2020 nm bands are very faint. In this spectral range, the Iapetus spectrum is characterized by a strong reddening. The CO2 band at 4260 nm and the Fresnel ice peak around 3100 nm are evident only on Hyperion, Phoebe and Iapetus. The phase curves at 550 and at 2232 nm are reported for all the available observations in the 0°-144° range; Rhea shows an opposition surge at visible wavelengths in the 0.5°-1.17° interval. The improvement on the retrieval of the full-disk reflectance spectra can be appreciated by a direct comparison with ground-based telescopic data available from literature. Finally, data processing strategies and recent upgrades introduced in the VIMS-V calibration pipeline (flat-field and destriping-despiking algorithm) are discussed in appendices.

Original languageEnglish (US)
Pages (from-to)259-290
Number of pages32
JournalIcarus
Volume186
Issue number1
DOIs
StatePublished - Jan 2007

Keywords

  • Image processing
  • Infrared observations
  • Saturn
  • Spectroscopy
  • satellites

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Saturn's icy satellites investigated by Cassini-VIMS. I. Full-disk properties: 350-5100 nm reflectance spectra and phase curves'. Together they form a unique fingerprint.

Cite this