TY - JOUR
T1 - Roughness and Angularity of Fragments from Meteorite Disruption Experiments
AU - Gowman, Gabriel
AU - Cotto-Figueroa, Desireé
AU - Ryan, Andrew
AU - Garvie, Laurence A.J.
AU - Hoover, Christian G.
AU - Asphaug, Erik
N1 - Publisher Copyright:
© 2023. The Author(s). Published by the American Astronomical Society.
PY - 2023/10/1
Y1 - 2023/10/1
N2 - In this study, we set out to explore the relationship between fracture roughness and sample strength. We analyze 45 fragments of Aba Panu, Allende, and Tamdakht, three meteorites that have been strength-tested to disruption, to determine whether their shape or texture is correlated with measured compressive strength. A primary goal is to understand whether these exterior properties correlate with more challenging strength-related measurements. We first scan the samples and construct high-fidelity 3D models. The gradient-based angularity index AIg and the rms slope roughness metric θ rms are applied to all nine samples, and their validity and any correlation between them are analyzed. We find that different sample subsets show significant variation in both correlation strength and direction. We also find AIg to be of questionable validity in its application to highly angular samples. Based on our methodology and results, we do not find sufficient separation between the roughness values of samples to allow distinct identification of the three meteorites based on roughness alone. Additionally, neither metric shows a strong correlation with the strength of individual fragments. We do find, however, that the spread of the fragment strength distribution within a given meteorite has some correlation with its average roughness metric. Increased fragment roughness may imply greater structural heterogeneity and therefore potentially weaker behavior at larger sizes. We only have significant data sets for two meteorites, however, which are insufficient to correlate meteorite fracture roughness to meteorite strength in any simple way.
AB - In this study, we set out to explore the relationship between fracture roughness and sample strength. We analyze 45 fragments of Aba Panu, Allende, and Tamdakht, three meteorites that have been strength-tested to disruption, to determine whether their shape or texture is correlated with measured compressive strength. A primary goal is to understand whether these exterior properties correlate with more challenging strength-related measurements. We first scan the samples and construct high-fidelity 3D models. The gradient-based angularity index AIg and the rms slope roughness metric θ rms are applied to all nine samples, and their validity and any correlation between them are analyzed. We find that different sample subsets show significant variation in both correlation strength and direction. We also find AIg to be of questionable validity in its application to highly angular samples. Based on our methodology and results, we do not find sufficient separation between the roughness values of samples to allow distinct identification of the three meteorites based on roughness alone. Additionally, neither metric shows a strong correlation with the strength of individual fragments. We do find, however, that the spread of the fragment strength distribution within a given meteorite has some correlation with its average roughness metric. Increased fragment roughness may imply greater structural heterogeneity and therefore potentially weaker behavior at larger sizes. We only have significant data sets for two meteorites, however, which are insufficient to correlate meteorite fracture roughness to meteorite strength in any simple way.
UR - http://www.scopus.com/inward/record.url?scp=85179836265&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85179836265&partnerID=8YFLogxK
U2 - 10.3847/PSJ/acf5e9
DO - 10.3847/PSJ/acf5e9
M3 - Article
AN - SCOPUS:85179836265
SN - 2632-3338
VL - 4
JO - Planetary Science Journal
JF - Planetary Science Journal
IS - 10
M1 - 187
ER -