@inproceedings{33f67df6c6734c05a91822341069fad7,
title = "Rotation, convection, and core collapse",
abstract = "As a preparation for the generation of a new set of core collapse progenitor models, a new investigation of the physics of such stars has begun. Supercomputers allow the simulation of three dimensional highly turbulent flow. Treating these numerical ”experiments” as valid representations of the behavior of high energy density (HED) plasma, a view supported by laboratory experiments with inertial confinement fusion (ICF) devices, we are beginning to develop a theory of this behavior appropriate to stellar interiors. Unlike conventional astrophysical convection theory, the Richardson-Kolmogorov turbulent cascade and the Lorenz strange attractor make an appearance, as well as a rich set of boundary-region physics. The process of developing physical insight from numerical simulations will be illustrated, and implications for stellar evolution, from the Sun to gamma-ray bursts and supernovae, will be discussed.",
author = "{David Arnett}, W.",
note = "Publisher Copyright: {\textcopyright} 2015, World Scientific. All rights reserved.; 13th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories, MG13 2012 ; Conference date: 01-07-2015 Through 07-07-2015",
year = "2015",
doi = "10.1142/9789814623995_0003",
language = "English (US)",
isbn = "9789814612142",
series = "The 13th Marcel Grossmann Meeting: On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories - Proceedings of the MG13 Meeting on General Relativity, 2012",
publisher = "World Scientific",
pages = "54--58",
editor = "Jantzen, {Robert T.} and Kjell Rosquist and Remo Ruffini and Remo Ruffini",
booktitle = "On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories",
address = "United States",
}