TY - JOUR
T1 - Rosuvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, decreases cardiac oxidative stress and remodeling in Ren2 transgenic rats
AU - Habibi, Javad
AU - Whaley-Connell, Adam
AU - Qazi, Mahnaz A.
AU - Hayden, Melvin R.
AU - Cooper, Shawna A.
AU - Tramontano, Anthony
AU - Thyfault, John
AU - Stump, Craig
AU - Ferrario, Carlos
AU - Muniyappa, Ranganath
AU - Sowers, James R.
PY - 2007/5
Y1 - 2007/5
N2 - Angiotensin-II (Ang-II)-stimulated increases in nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase activity and oxidative stress are known to play a key role in cardiac remodeling. Inhibition of isoprenylation and activation of small G proteins, such as Rac1, a component of NADPH oxidase, may mediate the antioxidant actions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins). In this study, we investigated the effects of rosuvastatin on cardiac oxidative stress and remodeling in transgenic rats (Ren2) overexpressing the mouse renin gene with elevated cardiac levels of Ang-II. We treated 6- to 7-wk-old Ren2 rats and age-matched Sprague-Dawley (SD) rats with rosuvastatin (10 mg/kg·d) or vehicle for 3 wk. At the end of the treatment period, left ventricular mass, wall thickness, ejection fraction (by echocardiography), and cardiac remodeling (by light microscopy and immunohistochemistry) were assessed. In addition, myocardial content of nitrotyrosine, malondialdehyde, NADPH-oxidase subunits (gp91phox, p40phox, and p22phox), and Rac1 were analyzed by immunochemistry. Systolic blood pressure was significantly higher in Ren2 rats, compared with SD rats (P < 0.05); rosuvastatin had no significant effect on systolic blood pressure in either group. In Ren2, but not SD rats, rosuvastatin significantly improved the ventricular ejection fraction, cardiac hypertrophy, and perivascular fibrosis (P < 0.05). In addition, rosuvastatin administration significantly decreased the accentuated myocardial gp91 phox, p40phox, p22phox, and Rac1 expression. These changes were accompanied by a parallel reduction in myocardial lipid peroxidation (nitrotyrosine and malondialdehyde content) (P < 0.05). These results suggest that in vivo statin treatment through its direct actions on the heart reduces oxidative stress and remodeling including ventricular mass regression in the Ang-II-dependent Ren2 model.
AB - Angiotensin-II (Ang-II)-stimulated increases in nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase activity and oxidative stress are known to play a key role in cardiac remodeling. Inhibition of isoprenylation and activation of small G proteins, such as Rac1, a component of NADPH oxidase, may mediate the antioxidant actions of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins). In this study, we investigated the effects of rosuvastatin on cardiac oxidative stress and remodeling in transgenic rats (Ren2) overexpressing the mouse renin gene with elevated cardiac levels of Ang-II. We treated 6- to 7-wk-old Ren2 rats and age-matched Sprague-Dawley (SD) rats with rosuvastatin (10 mg/kg·d) or vehicle for 3 wk. At the end of the treatment period, left ventricular mass, wall thickness, ejection fraction (by echocardiography), and cardiac remodeling (by light microscopy and immunohistochemistry) were assessed. In addition, myocardial content of nitrotyrosine, malondialdehyde, NADPH-oxidase subunits (gp91phox, p40phox, and p22phox), and Rac1 were analyzed by immunochemistry. Systolic blood pressure was significantly higher in Ren2 rats, compared with SD rats (P < 0.05); rosuvastatin had no significant effect on systolic blood pressure in either group. In Ren2, but not SD rats, rosuvastatin significantly improved the ventricular ejection fraction, cardiac hypertrophy, and perivascular fibrosis (P < 0.05). In addition, rosuvastatin administration significantly decreased the accentuated myocardial gp91 phox, p40phox, p22phox, and Rac1 expression. These changes were accompanied by a parallel reduction in myocardial lipid peroxidation (nitrotyrosine and malondialdehyde content) (P < 0.05). These results suggest that in vivo statin treatment through its direct actions on the heart reduces oxidative stress and remodeling including ventricular mass regression in the Ang-II-dependent Ren2 model.
UR - http://www.scopus.com/inward/record.url?scp=34249804809&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34249804809&partnerID=8YFLogxK
U2 - 10.1210/en.2006-1355
DO - 10.1210/en.2006-1355
M3 - Article
C2 - 17317778
AN - SCOPUS:34249804809
SN - 0013-7227
VL - 148
SP - 2181
EP - 2188
JO - Endocrinology
JF - Endocrinology
IS - 5
ER -