TY - JOUR
T1 - Rongibbsite, Pb2(Si4Al)O11(OH), a new zeolitic aluminosilicate mineral with an interrupted framework from Maricopa County, Arizona, U.S.A.
AU - Yang, Hexiong
AU - Downs, Robert T.
AU - Evans, Stanley H.
AU - Jenkins, Robert A.
AU - Bloch, Elias M.
N1 - Funding Information:
This study was funded by the Science Foundation Arizona.
PY - 2013/1
Y1 - 2013/1
N2 - A new zeolitic aluminosilicate mineral species, rongibbsite, ideally Pb2(Si4Al)O11(OH), has been found in a quartz vein in the Proterozoic gneiss of the Big Horn Mountains, Maricopa County, Arizona, U.S.A. The mineral is of secondary origin and is associated with wickenburgite, fornacite, mimetite, murdochite, and creaseyite. Rongibbsite crystals are bladed (elongated along the c axis, up to 0.70 × 0.20 × 0.05 mm), often in tufts. Dominant forms are {100}, {010}, {001}, and {101̄}. Twinning is common across (100). The mineral is colorless, transparent with white streak and vitreous luster. It is brittle and has a Mohs hardness of ∼5; cleavage is perfect on {100} and no parting was observed. The calculated density is 4.43 g/cm3. Optically, rongibbsite is biaxial (+), with nα = 1.690, nβ = 1.694, nγ = 1.700, cZ = 26°, 2Vmeas = 65(2)°. It is insoluble in water, acetone, or hydrochloric acid. Electron microprobe analysis yielded an empirical formula Pb2.05 (Si 3.89Al1.11)O11 (OH). Rongibbsite is monoclinic, with space group I2/m and unit-cell parameters a = 7.8356(6), b = 13.913(1), c = 10.278(1) Å, β = 92.925(4)°, and V = 1119.0(2) Å3. Its structure features an interrupted framework made of three symmetrically distinct TO4 tetrahedra (T = Si + Al). The framework density is 17.9 T per 1000 Å3. Unlike many known interrupted frameworks in zeolite-type materials, which are usually broken up by OH or F, the framework in rongibbsite is interrupted by O atoms. There are various corner-shared tetrahedral rings in the framework of rongibbsite, including two types of 4-membered, three 6-membered, and one 8-membered rings. The extraframework Pb and OH reside alternately in the channels formed by the 8-membered rings. The Pb cations are disordered over two split sites, Pb and Pb′, with site occupancies of 0.8 and 0.2, respectively, and a Pb-Pb′ distance of 0.229 Å, providing a structural explanation for the two strong Raman bands (at 3527 and 3444 cm-1) attributable to the O-H stretching vibrations. The average bond lengths for the T1, T2, and T3 tetrahedra are 1.620, 1.648, and 1.681 Å, respectively, indicating that the preference of Al for the three tetrahedral sites is T3 ≫ T2 > T1. Rongibbsite represents the first natural aluminosilicate with Pb as the only extraframework cation.
AB - A new zeolitic aluminosilicate mineral species, rongibbsite, ideally Pb2(Si4Al)O11(OH), has been found in a quartz vein in the Proterozoic gneiss of the Big Horn Mountains, Maricopa County, Arizona, U.S.A. The mineral is of secondary origin and is associated with wickenburgite, fornacite, mimetite, murdochite, and creaseyite. Rongibbsite crystals are bladed (elongated along the c axis, up to 0.70 × 0.20 × 0.05 mm), often in tufts. Dominant forms are {100}, {010}, {001}, and {101̄}. Twinning is common across (100). The mineral is colorless, transparent with white streak and vitreous luster. It is brittle and has a Mohs hardness of ∼5; cleavage is perfect on {100} and no parting was observed. The calculated density is 4.43 g/cm3. Optically, rongibbsite is biaxial (+), with nα = 1.690, nβ = 1.694, nγ = 1.700, cZ = 26°, 2Vmeas = 65(2)°. It is insoluble in water, acetone, or hydrochloric acid. Electron microprobe analysis yielded an empirical formula Pb2.05 (Si 3.89Al1.11)O11 (OH). Rongibbsite is monoclinic, with space group I2/m and unit-cell parameters a = 7.8356(6), b = 13.913(1), c = 10.278(1) Å, β = 92.925(4)°, and V = 1119.0(2) Å3. Its structure features an interrupted framework made of three symmetrically distinct TO4 tetrahedra (T = Si + Al). The framework density is 17.9 T per 1000 Å3. Unlike many known interrupted frameworks in zeolite-type materials, which are usually broken up by OH or F, the framework in rongibbsite is interrupted by O atoms. There are various corner-shared tetrahedral rings in the framework of rongibbsite, including two types of 4-membered, three 6-membered, and one 8-membered rings. The extraframework Pb and OH reside alternately in the channels formed by the 8-membered rings. The Pb cations are disordered over two split sites, Pb and Pb′, with site occupancies of 0.8 and 0.2, respectively, and a Pb-Pb′ distance of 0.229 Å, providing a structural explanation for the two strong Raman bands (at 3527 and 3444 cm-1) attributable to the O-H stretching vibrations. The average bond lengths for the T1, T2, and T3 tetrahedra are 1.620, 1.648, and 1.681 Å, respectively, indicating that the preference of Al for the three tetrahedral sites is T3 ≫ T2 > T1. Rongibbsite represents the first natural aluminosilicate with Pb as the only extraframework cation.
KW - Crystal structure
KW - Interrupted framework
KW - Pb-bearing
KW - Raman spectra
KW - Rongibbsite
KW - X-ray diffraction
KW - Zeolitic aluminosilicate
UR - http://www.scopus.com/inward/record.url?scp=84872016103&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84872016103&partnerID=8YFLogxK
U2 - 10.2138/am.2013.4252
DO - 10.2138/am.2013.4252
M3 - Article
AN - SCOPUS:84872016103
SN - 0003-004X
VL - 98
SP - 236
EP - 241
JO - American Mineralogist
JF - American Mineralogist
IS - 1
ER -