Abstract
In this paper we propose a hybrid control strategy to solve the problem of rendezvous, proximity operations, and docking of an autonomous spacecraft in 3D. Due to the different constraints and tasks to perform, a hybrid systems approach is implemented to solve the problem in three phases: 1) rendezvous; 2) rendezvous with smaller relative distance; 3) docking phase; and 4) docked phase; with range and angle measurements. In this approach, we implement a supervisor that robustly coordinates the individual controllers to accomplish the whole mission. We also present the designs of these individual controllers that solve the appropriate control problems for the individual phases. Numerical results for both the nominal and perturbed case validate the hybrid control strategy for the spacecraft close-proximity mission.
Original language | English (US) |
---|---|
Pages (from-to) | 88-93 |
Number of pages | 6 |
Journal | IFAC Workshop on Networked & Autonomous Air & Space Systems NAASS 2018: Santa Fe, New Mexico, USA, 13-15 June 2018 |
Volume | 51 |
Issue number | 12 |
DOIs | |
State | Published - Jan 1 2018 |
Keywords
- Hybrid systems
- Robustness
- Spacecraft close-proximity missions
- Supervisory control
ASJC Scopus subject areas
- Control and Systems Engineering
Fingerprint
Dive into the research topics of 'Robust Hybrid Supervisory Control for a 3-DOF Spacecraft in Close-Proximity Operations'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Robust Hybrid Supervisory Control for a 3-DOF Spacecraft in Close-Proximity Operations. / Zucchini, Giulia; Malladi, Bharani P.; Sanfelice, Ricardo G. et al.
In: IFAC Workshop on Networked & Autonomous Air & Space Systems NAASS 2018: Santa Fe, New Mexico, USA, 13-15 June 2018, Vol. 51, No. 12, 01.01.2018, p. 88-93.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Robust Hybrid Supervisory Control for a 3-DOF Spacecraft in Close-Proximity Operations
AU - Zucchini, Giulia
AU - Malladi, Bharani P.
AU - Sanfelice, Ricardo G.
AU - Butcher, Eric A.
N1 - Funding Information: Robust Hybrid Supervisory Control for a Robust Hybrid Supervisory Control for a Robust Hybrid Supervisory Control for a 3-DOF Spacecraft in Clo★se-Proximity 3-DOF SpacOpecreaftratiinonCslo★★se-Proximity Operations ★ Ope∗rations ∗∗ Giulia Zucchini ∗∗ Bharani P. Malladi ∗∗∗∗ Giulia Zucchini∗ Bh∗∗∗arani P. Malladi∗∗∗∗ RiGcaiurdlioa GZu.cScahninfeilicBeh∗∗a∗raEnriicPA. M. Baulltacdhier∗∗ Ricardo G. Sanfelice∗∗∗ Eric A. Butcher∗∗ RicarGiudliao G.ZucScanhinfelicei Bh∗∗a∗ranEriicPA.. MBualladtchier∗∗ Ricardo G. Sanfelice∗∗∗ Eric A. Butcher∗∗ ∗∗∗DepartmRicarent ofdEloeG.ctriScaanl,feliceElectronicEandricIA.nforBumatitchonerEngineering ∗Department of Electrical, Electronic and Information Engineering Dep(aDrEtmI)e,nUt nofivEerlescittyricoafl,BEolloegcntrao,nBicolaongdnaI,nf4o0r1m3a6tiIoTn(Ee-nmgianiel:ering (DEI), University of Bologna, Bologna, 40136 IT (e-mail: Department of Electrical, Electronic and Information Engineering ∗∗ giulia.zucchini4@studio.unibo.it) ∗∗Depa(DEIrtment), Uniof Avergeirsuoilstyipaa.ofzcuecBacolnhidongiMn4@aec,shtBauolndiioocga.nulanE,inb40136og.iint)eerIing,T (e-Unimaiverl:sity of ∗∗Department of Aerospace and Mechanical Engineering, University of ∗∗ArDizeopnaar,tmmTentunctsoofnf,AAgeZiuliaros8p5a.7zc2ue1candcUnhindSAi4M@st(eec-hmaudnaioiicl:a.ulmniEngianblloga.itidni)e@eerming,agi,l.Uniarniizveroenrasi.tyeyduof,f Arizona, Tucson, AZ 85721 USA (e-mail: malladi@email.arizona.edu, Department of Aerospace and Mechanical Engineering, University of ∗∗∗ ebutcher@email.arizona.edu) Arizona, Tucson, AZ 85721 USA (e-mail: malladi@email.arizona.edu, ∗∗∗Department of Computer Engineering, University of California S∗∗∗antaDeCpraurzt,mSeannttoafCeburoumztcher,pCutAe@r9emE5n0ai6gi4ln.areUeSirziAona.ng(,eU-emdnuaiv)ile:rrsictyarodfo@Cualcisfoc.rendiua) Santa Cruz, Santa Cruz, CA 95064 USA (e-mail: ricardo@ucsc.edu) Department of Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA (e-mail: ricardo@ucsc.edu) Abstract: In this paper we propose a hybrid control strateffiy to solve the problem of rendezvous, Abstract: In this paper we propose a hybrid control strateffiy to solve the problem of rendezvous, pArboxsitmraitcyt:oIpnetrhaitsiopnasp, earnwde dporocpkionsfefi aofhyabnriaductontormolosutsrastpefafiycetcorasoftlvienth3eDp. rDobuleemtoofthrenddeifzfveroeunst, Abstract: In this paper we propose a hybrid control strateffiy to solve the problem of rendezvous, constraints and tasks to perform, a hybrid systems approach is implemented to solve the problem proximity operations, and dockinffi of an autonomous spacecraft in 3D. Due to the different in three phases: 1) rendezvous; 2) rendezvous with smaller relative distance; 3) dockinffi phase; constraints and tasks to perform, a hybrid systems approach is implemented to solve the problem and 4) docked phase; with ranffie and anffile measurements. In this approach, we implement a in three phases: 1) rendezvous; 2) rendezvous with smaller relative distance; 3) dockinffi phase; supervisor that robustly coordinates the individual controllers to accomplish the whole mission. and 4) docked phase; with ranffie and anffile measurements. In this approach, we implement a We also present the desiffins of these individual controllers that solve the appropriate control supervisor that robustly coordinates the individual controllers to accomplish the whole mission. problems for the individual phases. Numerical results for both the nominal and perturbed case We also present the desiffins of these individual controllers that solve the appropriate control problems for the individual phases. Numerical results for both the nominal and perturbed case problems for the individual phases. Numerical results for both the nominal and perturbed case validate the hybrid control strateffiy for the spacecraft close-proximity mission. © 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. Keywords: Hybrid systems, Spacecraft close-proximity missions, Supervisory control, Keywords: Hybrid systems, Spacecraft close-proximity missions, Supervisory control, RKoeybwusotrndess:sHybrid systems, Spacecraft close-proximity missions, Supervisory control, Keywords: Hybrid systems, Spacecraft close-proximity missions, Supervisory control, Robust1.nessINTRODUCTION dimensional spacecraft modeled usinffi the CWH equations. 1. INTRODUCTION dimensional spacecraft modeled usinffi the CWH equations. 1. INTRODUCTION dimelnasriotnatlhsepastcreactreafffitymproedselnetdedusiinnffMi thalelaCdWi eHt aeql.u(a2t0io1n6s),. In recent years there has been an increasinffi necessity to Similar to the strateffiy presented in Malladi et al. (2016), InIn rreecceenntt yyeeaarrss tthhereree hhasas bbeeneen anan iinncrcreasieasinnffiffi nnecessecessiittyy ttoo this problem consists of the followinffi four main phases: 1) IcInnonrtercoelnttheyyeedaayrrnssattmhheeicrresohhfaarsseblaeeteeivnneasnatiennlclirteeeaamssiinofftffiiionnneeccfeeossrssiicttlyosteo- Simthisilaprorbletomthecosnstraistetsffioyfprethesefonltleodwinffiin Mafourlladimaeint aphal. (2se0s1:61),) ccoonnttrroollthethedynadynammicicssooffrerelalattiivveessaatetellitellitemomotitioonnfoforrcclolosse-e- rerendendezzvvoousus wwithith lalarffirffiee rerelalattiivvee disdistatancncee;; 22)) rerendendezzvvoousus wwithith cpcoornnorxtterricmooellnitthetyheymeddynaaisyrsnsioatnmmhseriic.cOessfoohtffeasnrreetbllaaheentteiivvmeeoansstaaiotteiennlllitecrlbiteeasietwmmoenoeffittinioontnnwecessoffooorrricctmlloyoosstree-oe- thisremnadlpelezrorvoblereulsamwtivictoehnsdlaiissrttsffaienorcfelthe;a3ti)vfodeoldlcoikswtianinffinfficpefoh; 2aur)serm;enaandindezpha4v)oudssoewcsk:iet1dh) pprrooxxiimimittyymimississionons.s.OOffttenentthheemotmotiiononbbeettwweeeennttwwooorormormoree ssmmaallellerr rerelalattiivvee disdistatancncee;; 33)) dodocckkiinnffiffi phaphassee;; aandnd 44)) dodocckkeedd pspaorrtnooexxtlrilmmoitleiitthesyimsdynaimssssoiiodnmessleic..dOsfaottsfeesnnreumttlahitenivfmfieoastaicooteinnrllitecbueelattwrmoeeceehtinnieottfnwoforobrritcmmloaoosnrre-dee resmhndeaaslleelez.rvWoreeuslaacowtinvithseiddislaeirsrffitatahencarectelat;h3tei)vrdoeaondiscffiketainancnffifidphaeah;n2af)sfielree; mndeandedazs4vu)orusedomowceknithetds ssaatetellitellitess isis mmoodedeleledd aassssumuminffiinffi aa ccircirculaularr cchhiieeff oorbrbitit aandnd pphhase.ase. WWee conconsisidderer tthhatat tthhee ranranffieffie anandd ananffileffile measumeasurreemmeennttss sasaarttedoexelllitepilmiiutettssyyiisomisrbmmssiitooonddeliens.lleeeddaOrifaaztsseenssduummtahbiinffienofmotufitaaticchoniircercbcuulahelaitewrrf’eccsehhnmiieetffowtoooiorrbitorbni.tmorTaahnndides samrheaasalleev.arWilreaeblacleotinvinseidedisaerctahthpncahteat;she3e)wrdoahnilcfefikeitnahnffiedphastaantfsfeiele;comanndesatrs4au)irnedotmsceaknnetdds aa dedeppuuttyy oorbitrbit linelineaarizrizeedd aabbooutut thethe cchhiieeff’s’s mmootiotion.n. TThishis aarere aavvaailailableble inin eeaacchh phaphassee wwhilehile thethe sstatatete ccoonsnstratraiinnttss aandnd araeasteddeuellitelpptsuuttisyynisootrrbithbmeitoCdellineilnoleehdaaerrizsiaszysees-ddumWaaibblinffitoosuuthtiaretthe-chHirceilcculalhh(iieeCrffW’’scshHmmie)foottiooeioqrbitnn.u.atTTiaohhisndniss pthrheease.atavasWkilsaebtconolepiensirdfeoaerrcmhthpaathreatsdheiefwfranehreilffienettanahcecdsetansastffilepehcaomeasusnesst.rPairrneetmcsiseaennltyds, reressultsults inin ththee CClolohehessssy-y-WiltsWiltshirehire--HHillill (C(CWHWH)) eequaquatiotionnss tthhee ttaskaskss ttoo ppererfforormm araree ddiifferffereenntt accesaccesss pphhases.ases. PPrrecieciselselyy,, rCreelssdeouuhlltspetsusstyiinynaotthnrbithdee WCClinelloiolthheasehrizssissryy-ee-dWWilts(1ai9blt6os0uthhire)i;retheH--HHiliillllclh(1((CieC8f7WWH’s8)Hm,))owtioeehqquaicn.uhattioTiioshisnnass awhreeecatoavnastkilarsibbletuotpeinetrofeoatrchmhephaaprreobsdeliefwfmehilerebnyttheaccesstastephcases.onstraPirnecitsselandy, ClClohohessyessy anandd WWiillttshshiriree ((1960)1960);; HiHillll ((1878)1878),, whwhiicchh iiss aa wwee ccoonnttrriibbuuttee toto thethe proprobleblemm bbyy ClineCinllsoeuhaltsersstimyiinmaethn-idnevaWCrialoiialthensthsiismrry-eoWiltsde(e11l.99.66S00hire))u;chH-Himlillliss(s11(Cioo88ns77WH88s))inc,n)wcludeehuquaidcehtiobiiossnthhas twheectoaskntrsibtuotpeertoforthem arproeblediffermebnyt access phases. Precisely, lfionremaarttioimnefl-yininvfafirmiainstsiomnosdaenl.dSreuncdhezmviosusisoinns3i-ndcimluednesiboontahl • Characterizinffi the family of individual controllers in linear time-invariant model. Such missions include both the 3D case and the required properties they should space, where ffiuidance, closed-loop control, and naviffia-• thhea3raDctcearsizeinafnfi dthtehefarmeqiluyiroefdinpdriovpiderutaiel scotnhteryolslherosulidn formation flyinffi missions and rendezvous in 3-dimensional induce to the closed-loop system to solve the problem tion alffiorithms must be desiffined takinffi into account tnhdeu3cDe tcoatsheeacnldostehde-loreoqpusiyresdtemprotpoesrotlivees theyprsohboluemld space, where ffiuidance, closed-loop control, and naviffia-within each phase of operation. mission requirements and the natural orbital dynamics of inidthuicne etoacthhephclaosseedo-floooppersaytsitoenm. to solve the problem tion alffiorithms must be desiffined takinffi into account Desiffininffi a supervisor that robustly coordinates the the system. Feedback control solutions for such missions wietshififinnienaffci ha psuhpaseervoisfoorptehraatioronb. ustly coordinates the mission requirements and the natural orbital dynamics of individual controllers so as to provide a solution to may involve LQR control Kluever (1999), time-varyinffi Dnedsiivffiindiunaffli acosnutpreorlvleirssorsothast troobpursotvlyidceooardsoinluattieosnthtoe the system. Feedback control solutions for such missions the problem. ffiain control Nazari and Butcher (2016), output trackinffi tnhdeivpirdoubalelmco.ntrollers so as to provide a solution to may involve LQR control Kluever (1999), time-varyinffi Providinffi specific controller desiffins that appropri-schemes that successfully reject disturbances Lee et al. Phreovpirdoibnlffei msp. ecific controller desiffins that appropri-ffiain control Nazari and Butcher (2016), output trackinffi ately solve the control problems for individual phases (2014), model predictive control strateffiies Vazquez et al. Ptreolvyidsoinlvffiestpheeccifoicntrcolnptrroolblelermdsesfoiffrinisndtihvaidtuaplpprhoapsreis-schemes that successfully reject disturbances Lee et al. and validate them numerically. (2011); Di Cairano et al. (2012); Weiss et al. (2015) and anedlyvasolildvaettehtehceomntnroulmperroicbalellmy.s for individual phases (h(22014)y0b1r1id);,cmoDonitdCreloalirpsatrnredaotiecteftfiiiveaesl.Mc(o2an0ltl1ra2old)i;steWtrataeilseffii.s(2ees0t1aV6l)a..z(q2015)uez etanald. The remainder of the paper is orffianized as follows. The hybrid control strateffiies Malladi et al. (2016). The arenmdavianldideratoeftthheempnaupmereriiscaolrlfyfia. nized as follows. The h(2011)ybrid;cDonitCairolrsantraoteetffiieals.Ma(2012)lladi;eWt aeil.ss(2et01al6).. (2015) and nohteatrieomnauisnederthorfouthffiehopuatptehreispaopreffiranainzdedthaesnfeoelldoewds.baTchke- Ihnybthisrid copantproerl,straweteeffixteiesndMallathediheytbarl.id(2c0o1n6t).rol strateffiy Thnotaetioremain usnedderthroofuffithehoputaptheer ispaorpeffianr aindzedtheasnefoleldeowds.baThcke- Ihnybtrhidiscopnatproerl,stwraeteeffixietsenMdaltlhaediheytbarli.d(2c0o1n6t)r.ol strateffiy nohteatrieomnauisnederthorfouthffiehopuatptehreispaopreffiranainzdedthaesnfeoelldoewds.baTchke-IfIonnrtrhenisdepzavpoeurs,,, pwwreoxeimxxttieetnydopttehhreeathioynbsr,idancdondttorrcooklinsftfiraotfeaffiny ffiffiroroundund mmaateteriariall oonn hhyybbrriidd ccoonnttrroollellersrs isis prepresseenntteedd inin SeSecc-- for rendezvous, proximity operations, and dockinffi of an ffirootuatnidonmuasteedriathl roonufhfihyoburitdthcoenptaroplelerrasnids pthreesneneteeddedinbSacekc--In this paper, we extend the hybrid control strateffiy tion 2. The problem of interest is formalized in Section 3 aufortonrendeomouzvsoussp,acecrproxafimtitiynoMpealraladtioinset, aaln.d(2016)dockinftfiooaf a3-n tfiiroonun2d. TmhaeteprriaolbloenmhoyfbrinidtecroensttriosllfeorrsmisalpizreedseinnteSdecintioSnec3- for rendezvous, proximity operations, and dockinffi of an and a ffieneral hybrid feedback control solution is presented tion 2. The problem of interest is formalized in Section 3 ★ Research by R. G. Sanfelice partially suppfirted by NSF Grants nfi. in Section 4. Section 5 presents specific desiffins for each ★ Research by R. G. Sanfelice partially suppfirted by NSF Grants nfi. inndSeacftfiieonner4a.l hSyecbtriodnfe5edpbraecskenctosnstproelcisfoicludtieosniffiinssprfoesreenatechd E★CRSe-s1e1a5r0c3h0b6yaRnd.GC.NSSa-n1f5e4li4c3e9p6a,ratniadllbyysAupFpOfiSrtRedGbryanNtSFFAG95r5a0n-t1s6n-1fi-. inonSteroctllieorna4n.dSneucmtioenric5alpsriemseunlatstiosnpsecfiofircbdoetshifftinhsefnoormeiancahl E★CS-1150306 and CNS-1544396, and by AFOSR Grant FA9550-16-1-cnonStectrolleionr a4.ndSnectumioneric5alpsiremseunlatstiospnsecifofircbdeothsiffinthes fnoormeinacahl E0CRS5e-.s1eR1a5ers0ce3ha0rb6cyhaRnbd.yGCE.N.SSAa-n.1fB5e4lui4ct3ec9hp6ea,rraatninaddllbyBys.AuMpFpaOflilSratRdeidGpbrayarntNitaSFllFAyG9s5ur5pa0np-tf1isr6tn-e1fdi-. caosnetraosllwerelalnadsnthuemmeroicraelffsieimneurlaaltcioansesfionrwbhoitchhtwheecnoonmsiidnearl 0015. Research by E. A. Butcher and B. Malladi partially suppfirted case as well as the more ffieneral case in which we consider E0yC1NS5-.S1RF15eGs0e3ra0ar6ncthanCbdyMCEMN.ISA-1-.16B5547u46t33c9h76e.,randbBy.AMFaOllSaRdiGpraarntitaFllAy9s5u5p0p-f1ir6t-e1d- case as well as the more ffieneral case in which we consider by NSF Grant CMMI-1657637. b0y1N5.SRFeGseraarncthCbyMEM.IA-1.6B57u6t3ch7e.r and B. Malladi partially suppfirted case as well as the more ffieneral case in which we consider 2405-8963 © 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. Copyright © 2018 IFAC 88 CPeer review under responsibility of International Federation of Automatic Control.opyright © 2018 IFAC 88 Copyright © 2018 IFAC 88 10.1016/j.ifacol.2018.07.093 Copyright © 2018 IFAC 88 Publisher Copyright: © 2018
PY - 2018/1/1
Y1 - 2018/1/1
N2 - In this paper we propose a hybrid control strategy to solve the problem of rendezvous, proximity operations, and docking of an autonomous spacecraft in 3D. Due to the different constraints and tasks to perform, a hybrid systems approach is implemented to solve the problem in three phases: 1) rendezvous; 2) rendezvous with smaller relative distance; 3) docking phase; and 4) docked phase; with range and angle measurements. In this approach, we implement a supervisor that robustly coordinates the individual controllers to accomplish the whole mission. We also present the designs of these individual controllers that solve the appropriate control problems for the individual phases. Numerical results for both the nominal and perturbed case validate the hybrid control strategy for the spacecraft close-proximity mission.
AB - In this paper we propose a hybrid control strategy to solve the problem of rendezvous, proximity operations, and docking of an autonomous spacecraft in 3D. Due to the different constraints and tasks to perform, a hybrid systems approach is implemented to solve the problem in three phases: 1) rendezvous; 2) rendezvous with smaller relative distance; 3) docking phase; and 4) docked phase; with range and angle measurements. In this approach, we implement a supervisor that robustly coordinates the individual controllers to accomplish the whole mission. We also present the designs of these individual controllers that solve the appropriate control problems for the individual phases. Numerical results for both the nominal and perturbed case validate the hybrid control strategy for the spacecraft close-proximity mission.
KW - Hybrid systems
KW - Robustness
KW - Spacecraft close-proximity missions
KW - Supervisory control
UR - http://www.scopus.com/inward/record.url?scp=85052432558&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052432558&partnerID=8YFLogxK
U2 - 10.1016/j.ifacol.2018.07.093
DO - 10.1016/j.ifacol.2018.07.093
M3 - Article
AN - SCOPUS:85052432558
VL - 51
SP - 88
EP - 93
JO - IFAC Workshop on Networked & Autonomous Air & Space Systems NAASS 2018: Santa Fe, New Mexico, USA, 13-15 June 2018
JF - IFAC Workshop on Networked & Autonomous Air & Space Systems NAASS 2018: Santa Fe, New Mexico, USA, 13-15 June 2018
SN - 2405-8963
IS - 12
ER -