RNA-seq analysis of the salt stress-induced transcripts in fast-growing bioenergy tree, Paulownia elongata

Michel Chaires, Dinesh Gupta, Nirmal Joshee, Kerry K. Cooper, Chhandak Basu

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Paulowina elongata is a fast-growing tree species is grown in different climates and types of soils. Environmental adaptability as well as high-yielding biomass make the P. elongata species an ideal candidate for biofuel production. High soil salinity is known to inhibit plant growth dramatically or leads to plant death. The purpose of this study was to characterize the salt-induced changes in the transcriptome of P. elongata. Transcriptome differences in response to salt stress were determined by RNA sequencing (RNA-seq) using next generation sequencing and bioinformatics analysis. A total of 645 genes were found to have significant altered expression in response to salt stress. Expression levels of a selective subset of these genes were chosen and confirmed using quantitative real-time PCR. To the best of our knowledge, this is the first report of saltinduced transcriptome analysis in P. elongata. The current study indicates that differential expression of a select group of genes of P. elongata and their possible roles in pathways and mechanisms related to salt tolerance. Functional characterization of these genes will assist in future investigations of salt tolerance in P. elongata, which could be used to enhance biofuel production.

Original languageEnglish (US)
Pages (from-to)128-136
Number of pages9
JournalJournal of Plant Interactions
Volume12
Issue number1
DOIs
StatePublished - 2017
Externally publishedYes

Keywords

  • Paulownia elongata
  • RNA seq
  • Salt stress
  • qPCR

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Plant Science

Fingerprint

Dive into the research topics of 'RNA-seq analysis of the salt stress-induced transcripts in fast-growing bioenergy tree, Paulownia elongata'. Together they form a unique fingerprint.

Cite this