TY - JOUR
T1 - Riparian vegetation classification from airborne laser scanning data with an emphasis on cottonwood trees
AU - Farid, A.
AU - Rautenkranz, D.
AU - Goodrich, D. C.
AU - Marsh, S. E.
AU - Sorooshian, S.
PY - 2006/2
Y1 - 2006/2
N2 - The high point density of airborne laser mapping systems enables achieving a detailed description of geographic objects and the terrain. Growing experience indicates, however, that extracting useful information directly from the data can be difficult. In this study, small-footprint lidar data were used to differentiate between young, mature, and old cottonwood trees in the San Pedro River Basin near Benson, Arizona, USA. The lidar data were acquired in June 2003, using the Optech Incorporated ALTM 1233 (Optech Incorporated, Toronto, Ont.), during flyovers conducted at an altitude of 750 m. The lidar data were preprocessed to create a two-band image of the study site: a high-accuracy canopy altitude model band, and a near-infrared intensity band. These lidar-derived images provided the basis for supervised classification of cottonwood age categories, using a maximum likelihood algorithm. The results of classification illustrate the potential of airborne lidar data to differentiate age classes of cottonwood trees for riparian areas quickly and accurately.
AB - The high point density of airborne laser mapping systems enables achieving a detailed description of geographic objects and the terrain. Growing experience indicates, however, that extracting useful information directly from the data can be difficult. In this study, small-footprint lidar data were used to differentiate between young, mature, and old cottonwood trees in the San Pedro River Basin near Benson, Arizona, USA. The lidar data were acquired in June 2003, using the Optech Incorporated ALTM 1233 (Optech Incorporated, Toronto, Ont.), during flyovers conducted at an altitude of 750 m. The lidar data were preprocessed to create a two-band image of the study site: a high-accuracy canopy altitude model band, and a near-infrared intensity band. These lidar-derived images provided the basis for supervised classification of cottonwood age categories, using a maximum likelihood algorithm. The results of classification illustrate the potential of airborne lidar data to differentiate age classes of cottonwood trees for riparian areas quickly and accurately.
UR - http://www.scopus.com/inward/record.url?scp=33746136867&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33746136867&partnerID=8YFLogxK
U2 - 10.5589/m06-003
DO - 10.5589/m06-003
M3 - Article
AN - SCOPUS:33746136867
SN - 0703-8992
VL - 32
SP - 15
EP - 18
JO - Canadian Journal of Remote Sensing
JF - Canadian Journal of Remote Sensing
IS - 1
ER -