Retrieval of the d/sdL7+T7.5p Binary SDSS J1416+1348AB

Eileen C. Gonzales, Ben Burningham, Jacqueline K. Faherty, Colleen Cleary, Channon Visscher, Mark S. Marley, Roxana Lupu, Richard Freedman, Eileen C. Gonzales

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

We present the distance-calibrated spectral energy distribution (SED) of the d/sdL7 SDSS J14162408+1348263A (J1416A) and an updated SED for SDSS J14162408+1348263B (J1416B). We also present the first retrieval analysis of J1416A using the Brewster retrieval code base and the second retrieval of J1416B. We find that the primary is best fit by a nongray cloud opacity with a power-law wavelength dependence but is indistinguishable between the type of cloud parameterization. J1416B is best fit by a cloud-free model, consistent with the results from Line et al. Most fundamental parameters derived via SEDs and retrievals are consistent within 1σ for both J1416A and J1416B. The exceptions include the radius of J1416A, where the retrieved radius is smaller than the evolutionary model-based radius from the SED for the deck cloud model, and the bolometric luminosity, which is consistent within 2.5σ for both cloud models. The pair's metallicity and carbon-to-oxygen ratio point toward formation and evolution as a system. By comparing the retrieved alkali abundances while using two opacity models, we are able to evaluate how the opacities behave for the L and T dwarf. Lastly, we find that relatively small changes in composition can drive major observable differences for lower-temperature objects.

Original languageEnglish (US)
Article number46
JournalAstrophysical Journal
Volume905
Issue number1
DOIs
StatePublished - Dec 10 2020
Externally publishedYes

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Retrieval of the d/sdL7+T7.5p Binary SDSS J1416+1348AB'. Together they form a unique fingerprint.

Cite this