TY - JOUR
T1 - Response of the contralateral hippocampus to lateral fluid percussion brain injury
AU - Tran, Lorriann D.
AU - Lifshitz, Jonathan
AU - Witgen, Brent M.
AU - Schwarzbach, Elizabeth
AU - Cohen, Akiva S.
AU - Grady, M. Sean
PY - 2006/9
Y1 - 2006/9
N2 - Traumatic brain injury is a leading cause of death and disability in the United States. Pathological examinations of humans and animal models after brain injury demonstrate hippocampal neuronal damage, which may contribute to cognitive impairments. Data from our laboratories have shown that, at 1 week after brain injury, mice possess significantly fewer neurons in all ipsilateral hippocampal subregions and a cognitive impairment Since cognitive function is distributed across both cerebral hemispheres, the present paper explores the morphological and physiological response of the contralateral hippocampus to lateral brain injury. We analyzed the contralateral hippocampus using design-based stereology, Fluoro-Jade (FJ) histochemistry, and extracellular field recordings in mice at 7 and 30 days after lateral fluid percussion injury (FPI). At 7 days, all contralateral hippocampal subregions possess significantly fewer healthy neurons compared to sham-injured animals and demonstrate FJ-positive neuronal damage, but not at 30 days. Both the ipsilateral and contralateral dentate gyri demonstrate significantly increased excitability at 7 days post-injury, but only ipsilateral dentate gyrus hyperexcitability persists at 30 days compared to sham. In the contralateral hippocampus, the transient decrease in the number of healthy neurons, concomitant with FJ damage, and electrophysiological alterations establish a stunned period of cellular and circuit dysfunction. The return of healthy neuron number, absence of FJ damage, and sham level of excitability in the contralateral hippocampus suggest recovery of structure and function by 30 days after injury. The cognitive recovery observed after human traumatic brain injury may stem from a differential injury exposure and time course of recovery between homologous regions of the two hemispheres.
AB - Traumatic brain injury is a leading cause of death and disability in the United States. Pathological examinations of humans and animal models after brain injury demonstrate hippocampal neuronal damage, which may contribute to cognitive impairments. Data from our laboratories have shown that, at 1 week after brain injury, mice possess significantly fewer neurons in all ipsilateral hippocampal subregions and a cognitive impairment Since cognitive function is distributed across both cerebral hemispheres, the present paper explores the morphological and physiological response of the contralateral hippocampus to lateral brain injury. We analyzed the contralateral hippocampus using design-based stereology, Fluoro-Jade (FJ) histochemistry, and extracellular field recordings in mice at 7 and 30 days after lateral fluid percussion injury (FPI). At 7 days, all contralateral hippocampal subregions possess significantly fewer healthy neurons compared to sham-injured animals and demonstrate FJ-positive neuronal damage, but not at 30 days. Both the ipsilateral and contralateral dentate gyri demonstrate significantly increased excitability at 7 days post-injury, but only ipsilateral dentate gyrus hyperexcitability persists at 30 days compared to sham. In the contralateral hippocampus, the transient decrease in the number of healthy neurons, concomitant with FJ damage, and electrophysiological alterations establish a stunned period of cellular and circuit dysfunction. The return of healthy neuron number, absence of FJ damage, and sham level of excitability in the contralateral hippocampus suggest recovery of structure and function by 30 days after injury. The cognitive recovery observed after human traumatic brain injury may stem from a differential injury exposure and time course of recovery between homologous regions of the two hemispheres.
KW - Electrophysiology
KW - Fluoro-jade
KW - Mouse
KW - Stereology
KW - Traumatic brain injury
UR - http://www.scopus.com/inward/record.url?scp=33846457168&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33846457168&partnerID=8YFLogxK
U2 - 10.1089/neu.2006.23.1330
DO - 10.1089/neu.2006.23.1330
M3 - Article
C2 - 16958585
AN - SCOPUS:33846457168
SN - 0897-7151
VL - 23
SP - 1330
EP - 1342
JO - Journal of Neurotrauma
JF - Journal of Neurotrauma
IS - 9
ER -