Abstract
Extracellular DNA from dead microorganisms can persist in soil for weeks to years 1-3. Although it is implicitly assumed that the microbial DNA recovered from soil predominantly represents intact cells, it is unclear how extracellular DNA affects molecular analyses of microbial diversity. We examined a wide range of soils using viability PCR based on the photoreactive DNA-intercalating dye propidium monoazide 4. We found that, on average, 40% of both prokaryotic and fungal DNA was extracellular or from cells that were no longer intact. Extracellular DNA inflated the observed prokaryotic and fungal richness by up to 55% and caused significant misestimation of taxon relative abundances, including the relative abundances of taxa integral to key ecosystem processes. Extracellular DNA was not found in measurable amounts in all soils; it was more likely to be present in soils with low exchangeable base cation concentrations, and the effect of its removal on microbial community structure was more profound in high-pH soils. Together, these findings imply that this 'relic DNA' remaining in soil after cell death can obscure treatment effects, spatiotemporal patterns and relationships between microbial taxa and environmental conditions.
Original language | English (US) |
---|---|
Article number | 16242 |
Journal | Nature Microbiology |
Volume | 2 |
DOIs | |
State | Published - Dec 19 2016 |
Externally published | Yes |
ASJC Scopus subject areas
- Microbiology
- Immunology
- Applied Microbiology and Biotechnology
- Genetics
- Microbiology (medical)
- Cell Biology