Relationships among glycolytic potential, dark cutting (dark, firm, and dry) beef, and cooked beef palatability

D. M. Wulf, R. S. Emnett, J. M. Leheska, S. J. Moeller

Research output: Contribution to journalArticlepeer-review

116 Scopus citations

Abstract

One hundred beef carcasses were selected at three packing plants and were used to determine the relationship between glycolytic potential (GP) and dark, firm, and dry (DFD) beef and to determine the effects of DFD status and GP on cooked beef palatability. Eight individual muscles were excised from one hindquarter of each carcass at d 7 postmortem: longissimus lumborum, psoas major, gluteus medius, tensor fasciae latae, rectus femoris, semimembranosus, biceps femoris, and semitendinosus. Ultimate pH, colorimeter readings, and Warner-Bratzler shear force were determined for all eight muscles at d 7 postmortem. A nine-member trained sensory panel evaluated cooked longissimus lumborum, gluteus medius, and semimembranosus steaks. Traits determined solely for the longissimus lumborum were GP (2 x [glycogen + glucose + glucose-6-phosphate] + lactate) and ether-extractable fat. A curvilinear relationship existed between GP and ultimate pH within the longissimus muscle. There appeared to be a GP threshold at approximately 100 μmol/g, below which lower GP was associated with higher ultimate pH and above which GP had no effect on ultimate pH. The greatest pH and muscle color differences between normal and DFD carcasses were observed in the longissimus lumborum, gluteus medius, semimembranosus, and semitendinosus muscles. Cooked longissimus from DFD carcasses had higher shear force values (46% greater) and more shear force variation (2.3 times greater variation) than those from normal carcasses. Dark cutting carcasses also had higher shear force values for gluteus medius (33% greater) and semimembranosus (36% greater) than normal carcasses. Sensory panel tenderness of longissimus, gluteus medius, and semimembranosus was lower for DFD carcasses than for normal carcasses. Longissimus and gluteus medius flavor desirability scores were lower for DFD than for normal carcasses. Steaks from DFD carcasses had more off-flavor comments than steaks from normal carcasses, specifically more "peanutty," "sour," and "bitter" flavors. The DFD effect of higher shear force values was approximately five times greater (+3.11 kg vs +0.63 kg) for carcasses with "slight" marbling scores than for carcasses with "small" marbling scores. In general, higher GP was associated with increased tenderness, even among normal carcasses. In conclusion, low GP was associated with DFD beef and resulted in substantially less-palatable cooked steaks.

Original languageEnglish (US)
Pages (from-to)1895-1903
Number of pages9
JournalJournal of animal science
Volume80
Issue number7
DOIs
StatePublished - Jul 2002
Externally publishedYes

Keywords

  • Beef
  • Dark Cutting Meat
  • Glycogen
  • Palatability
  • Tenderness

ASJC Scopus subject areas

  • Food Science
  • Animal Science and Zoology
  • Genetics

Fingerprint

Dive into the research topics of 'Relationships among glycolytic potential, dark cutting (dark, firm, and dry) beef, and cooked beef palatability'. Together they form a unique fingerprint.

Cite this