Abstract
Background: Colony stimulating factor-1 (CSF-1) plays an important role in ovarian cancer biology and as a prognostic factor in ovarian cancer. Elevated levels of CSF-1 promote progression of ovarian cancer, by binding to CSF-1R (the tyrosine kinase receptor encoded by c-fms proto-oncogene).Post-transcriptional regulation of CSF-1 mRNA by its 3' untranslated region (3'UTR) has been studied previously. Several cis-acting elements in 3'UTR are involved in post-transcriptional regulation of CSF-1 mRNA. These include conserved protein-binding motifs as well as miRNA targets. miRNAs are 21-23nt single strand RNA which bind the complementary sequences in mRNAs, suppressing translation and enhancing mRNA degradation.Results: In this report, we investigate the effect of miRNAs on post-transcriptional regulation of CSF-1 mRNA in human ovarian cancer. Bioinformatics analysis predicts at least 14 miRNAs targeting CSF-1 mRNA 3'UTR. By mutations in putative miRNA targets in CSF-1 mRNA 3'UTR, we identified a common target for both miR-128 and miR-152. We have also found that both miR-128 and miR-152 down-regulate CSF-1 mRNA and protein expression in ovarian cancer cells leading to decreased cell motility and adhesion in vitro, two major aspects of the metastatic potential of cancer cells.Conclusion: The major CSF-1 mRNA 3'UTR contains a common miRNA target which is involved in post-transcriptional regulation of CSF-1. Our results provide the evidence for a mechanism by which miR-128 and miR-152 down-regulate CSF-1, an important regulator of ovarian cancer.
Original language | English (US) |
---|---|
Article number | 58 |
Journal | Molecular Cancer |
Volume | 11 |
DOIs | |
State | Published - Aug 21 2012 |
Keywords
- CSF-1 mRNA
- Post-transcriptional regulation
- miR-128
- miR-152
- motility and adhesion
ASJC Scopus subject areas
- Molecular Medicine
- Oncology
- Cancer Research