TY - JOUR
T1 - Reducing surface recombination velocity of methylammonium-free mixed-cation mixed-halide perovskites via surface passivation
AU - Jariwala, Sarthak
AU - Burke, Sven
AU - Dunfield, Sean
AU - Shallcross, R. Clayton
AU - Taddei, Margherita
AU - Wang, Jian
AU - Eperon, Giles E.
AU - Armstrong, Neal R.
AU - Berry, Joseph J.
AU - Ginger, David S.
N1 - Publisher Copyright:
©
PY - 2021/7/13
Y1 - 2021/7/13
N2 - We control surface recombination in the mixed-cation, mixed-halide perovskite, FA0.83Cs0.17Pb(I0.85Br0.15)3, by passivating nonradiative defects with the polymerizable Lewis base (3-aminopropyl)trimethoxysilane (APTMS). We demonstrate average minority carrier lifetimes >4 μs, nearly single exponential monomolecular photoluminescence decays, and high external photoluminescence quantum efficiencies (>20%, corresponding to ~97% of the maximum theoretical quasi-Fermi-level splitting) at low excitation fluence. We confirm both the composition and valence band edge position of the FA0.83Cs0.17Pb(I0.85Br0.15)3 perovskite using multi-institutional, cross-validated, X-ray photoelectron spectroscopy and UV photoelectron spectroscopy measurements. We extend the APTMS surface passivation to higher bandgap double-cation (FA and Cs) compositions (1.7, 1.75, and 1.8 eV) as well as the widely used triple-cation (FA, MA, and Cs) composition. Finally, we demonstrate that the average surface recombination velocity decreases from ~1000 to ~10 cm/s post APTMS passivation for FA0.83Cs0.17Pb(I0.85Br0.15)3. Our results demonstrate that surface-mediated recombination is the primary nonradiative loss pathway in many methylammonium (MA)-free mixed-cation mixed-halide films with a range of different bandgaps, which is a problem observed for a wide range of perovskite active layers and reactive electrical contacts. Our study also provides insights to develop passivating molecules that help reduce surface recombination in MA-free mixed-cation mixed-halide films and indicates that surface passivation and contact engineering will enable near-theoretical device efficiencies with these materials.
AB - We control surface recombination in the mixed-cation, mixed-halide perovskite, FA0.83Cs0.17Pb(I0.85Br0.15)3, by passivating nonradiative defects with the polymerizable Lewis base (3-aminopropyl)trimethoxysilane (APTMS). We demonstrate average minority carrier lifetimes >4 μs, nearly single exponential monomolecular photoluminescence decays, and high external photoluminescence quantum efficiencies (>20%, corresponding to ~97% of the maximum theoretical quasi-Fermi-level splitting) at low excitation fluence. We confirm both the composition and valence band edge position of the FA0.83Cs0.17Pb(I0.85Br0.15)3 perovskite using multi-institutional, cross-validated, X-ray photoelectron spectroscopy and UV photoelectron spectroscopy measurements. We extend the APTMS surface passivation to higher bandgap double-cation (FA and Cs) compositions (1.7, 1.75, and 1.8 eV) as well as the widely used triple-cation (FA, MA, and Cs) composition. Finally, we demonstrate that the average surface recombination velocity decreases from ~1000 to ~10 cm/s post APTMS passivation for FA0.83Cs0.17Pb(I0.85Br0.15)3. Our results demonstrate that surface-mediated recombination is the primary nonradiative loss pathway in many methylammonium (MA)-free mixed-cation mixed-halide films with a range of different bandgaps, which is a problem observed for a wide range of perovskite active layers and reactive electrical contacts. Our study also provides insights to develop passivating molecules that help reduce surface recombination in MA-free mixed-cation mixed-halide films and indicates that surface passivation and contact engineering will enable near-theoretical device efficiencies with these materials.
UR - http://www.scopus.com/inward/record.url?scp=85110193825&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85110193825&partnerID=8YFLogxK
U2 - 10.1021/acs.chemmater.1c00848
DO - 10.1021/acs.chemmater.1c00848
M3 - Article
AN - SCOPUS:85110193825
SN - 0897-4756
VL - 33
SP - 5035
EP - 5044
JO - Chemistry of Materials
JF - Chemistry of Materials
IS - 13
ER -