Reduced activity and large particles from the disintegrating planet candidate KIC 12557548b

E. Schlawin, T. Herter, M. Zhao, J. K. Teske, H. Chen

Research output: Contribution to journalArticlepeer-review

12 Scopus citations


The intriguing exoplanet candidate KIC 12557548b is believed to have a comet-like tail of dusty debris trailing a small rocky planet. The tail of debris scatters up to 1.3% of the stellar light in the Kepler observatory's bandpass (0.42-0.9 μm). Observing the tail's transit depth at multiple wavelengths can reveal the composition and particle size of the debris, constraining the makeup and lifetime of the sub-Mercury planet. Early dust particle size predictions from the scattering of the comet-like tail pointed toward a dust size of ∼0.1 μm for silicate compositions. These small particles would produce a much deeper optical transit depth than near-infrared transit depth. We measure a transmission spectrum for KIC 12557548b using the SpeX spectrograph (covering 0.8-2.4 μm) simultaneously with the MORIS imager taking r′ (0.63 μm) photometry on the Infrared Telescope Facility for eight nights and one night in H band (1.63 μm) using the Wide-field IR Camera at the Palomar 200 inch telescope. The infrared spectra are plagued by systematic errors, but we argue that sufficient precision is obtained when using differential spectroscopic calibration when combining multiple nights. The average differential transmission spectrum is flat, supporting findings that KIC 12557548b's debris is likely composed of larger particles 0.5 μm for pyroxene and olivine and 0.2 μm for iron and corundum. The r′ photometric transit depths are all below the average Kepler value, suggesting that the observations occurred during a weak period or that the mechanisms producing optical broadband transit depths are suppressed.

Original languageEnglish (US)
Article number156
JournalAstrophysical Journal
Issue number2
StatePublished - Aug 1 2016


  • planets and satellites: individual (KIC 12557548b)
  • stars: individual (KIC 12557548)

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science


Dive into the research topics of 'Reduced activity and large particles from the disintegrating planet candidate KIC 12557548b'. Together they form a unique fingerprint.

Cite this