TY - JOUR
T1 - Red supergiants as potential type IIn supernova progenitors
T2 - Spatially resolved 4.6 μm CO emission aroung VY CMa and betelgeuse
AU - Smith, Nathan
AU - Hinkle, Kenneth H.
AU - Ryde, Nils
PY - 2009
Y1 - 2009
N2 - We present high-resolution 4.6 μm CO spectra of the circumstellar environments of two red supergiants (RSGs) that are potential supernova (SN) progenitors: Betelgeuse and VY Canis Majoris (VY CMa). Around Betelgeuse, 12CO emission within 3″ (12 km s-1) follows a mildly clumpy but otherwise spherical shell, smaller than its 55″ shell in K I λ7699. In stark contrast, 4.6 μm CO emission around VY CMa is coincident with bright K I in its clumpy asymmetric reflection nebula, within 5″ (40 km s-1) of the star. Our CO data reveal redshifted features not seen in K I spectra of VY CMa, indicating a more isotropic distribution of gas punctuated by randomly distributed asymmetric clumps. The relative CO and K I distribution in Betelgeuse arises from ionization effects within a steady wind, whereas in VY CMa, K I is emitted from skins of CO cloudlets resulting from episodic mass ejections 500-1000 yr ago. In both cases, CO and K I trace potential pre-SN circumstellar matter: we conclude that an extreme RSG like VY CMa might produce a Type IIn event like SN 1988Z if it were to explode in its current state, but Betelgeuse will not. VY CMa demonstrates that luminous blue variables are not necessarily the only progenitors of SNe IIn, but it underscores the requirement that SNe IIn suffer enhanced episodic mass loss shortly before exploding.
AB - We present high-resolution 4.6 μm CO spectra of the circumstellar environments of two red supergiants (RSGs) that are potential supernova (SN) progenitors: Betelgeuse and VY Canis Majoris (VY CMa). Around Betelgeuse, 12CO emission within 3″ (12 km s-1) follows a mildly clumpy but otherwise spherical shell, smaller than its 55″ shell in K I λ7699. In stark contrast, 4.6 μm CO emission around VY CMa is coincident with bright K I in its clumpy asymmetric reflection nebula, within 5″ (40 km s-1) of the star. Our CO data reveal redshifted features not seen in K I spectra of VY CMa, indicating a more isotropic distribution of gas punctuated by randomly distributed asymmetric clumps. The relative CO and K I distribution in Betelgeuse arises from ionization effects within a steady wind, whereas in VY CMa, K I is emitted from skins of CO cloudlets resulting from episodic mass ejections 500-1000 yr ago. In both cases, CO and K I trace potential pre-SN circumstellar matter: we conclude that an extreme RSG like VY CMa might produce a Type IIn event like SN 1988Z if it were to explode in its current state, but Betelgeuse will not. VY CMa demonstrates that luminous blue variables are not necessarily the only progenitors of SNe IIn, but it underscores the requirement that SNe IIn suffer enhanced episodic mass loss shortly before exploding.
KW - Circumstellar matter
KW - Stars: evolution
KW - Stars: mass loss
KW - Stars: winds, outflows
UR - http://www.scopus.com/inward/record.url?scp=66249105650&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=66249105650&partnerID=8YFLogxK
U2 - 10.1088/0004-6256/137/3/3558
DO - 10.1088/0004-6256/137/3/3558
M3 - Article
AN - SCOPUS:66249105650
VL - 137
SP - 3558
EP - 3573
JO - Astronomical Journal
JF - Astronomical Journal
SN - 0004-6256
IS - 3
ER -