Abstract
We developed a prognostic model for longer-term outcome prediction in traumatic brain injury (TBI) using an attention-based recurrent neural network (RNN). The model was trained on admission and time series data obtained from a multi-site, longitudinal, observational study of TBI patients. We included 110 clinical variables as model input and Glasgow Outcome Score Extended (GOSE) at six months after injury as the outcome variable. Designed to handle missing values in time series data, the RNN model was compared to an existing TBI prognostic model using 10-fold cross validation. The area under receiver operating characteristic curve (AUC) for the RNN model is 0.86 (95% CI 0.83-0.89) for binary outcomes, whereas the AUC of the comparison model is 0.69 (95% CI 0.67-0.71). We demonstrated that including time series data into prognostic models for TBI can boost the discriminative ability of prediction models with either binary or ordinal outcomes.
Original language | English (US) |
---|---|
Pages (from-to) | 900-909 |
Number of pages | 10 |
Journal | AMIA ... Annual Symposium proceedings. AMIA Symposium |
Volume | 2021 |
State | Published - 2021 |
ASJC Scopus subject areas
- General Medicine