Abstract
We study the use of nonlinear amplifying loop mirrors to recover soliton pulses nonadiabatically deformed by losses. We approach this problem as a mapping problem of input pulse to output pulse, for segments of f iber followed by a combination of linear and nonlinear amplif ication. For a wide range of amplif ier spacings, we find numerically that a single optimal input pulse of soliton shape exists for each amplif ier spacing, which is well recovered at output. The recovered output pulses contain only, 3% continuous radiation.
Original language | English (US) |
---|---|
Pages (from-to) | 2490-2492 |
Number of pages | 3 |
Journal | Optics letters |
Volume | 20 |
Issue number | 24 |
DOIs | |
State | Published - Dec 15 1995 |
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics