Reconstructing the neutron-star equation of state from astrophysical measurements

Research output: Contribution to journalArticlepeer-review

130 Scopus citations


The properties of matter at ultrahigh densities, low temperatures, and with a significant asymmetry between protons and neutrons can be studied exclusively through astrophysical observations of neutron stars. We show that measurements of the masses and radii of neutron stars can lead to tight constraints on the pressure of matter at three fiducial densities, from 1.85 to 7.4 times the density of nuclear saturation, in a manner that is largely model independent and that captures the key characteristics of the equation of state. We demonstrate that observations with 10% uncertainties of at least three neutron stars can lead to measurements of the pressure at these fiducial densities with an accuracy of 0.11 dex or □30%. Observations of three neutron stars with 5% uncertainties are sufficient to distinguish at a better than 3σ confidence level between currently proposed equations of state. In the electromagnetic spectrum, such accurate measurements will become possible for weakly magnetic neutron stars during thermonuclear flashes and in quiescence with future missions such as the International X-ray Observatory.

Original languageEnglish (US)
Article number103003
JournalPhysical Review D - Particles, Fields, Gravitation and Cosmology
Issue number10
StatePublished - Nov 5 2009

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Physics and Astronomy (miscellaneous)


Dive into the research topics of 'Reconstructing the neutron-star equation of state from astrophysical measurements'. Together they form a unique fingerprint.

Cite this