TY - JOUR
T1 - Recognition and Repair of the CC-1065-(N3-Adenine)-DNA Adduct by the UVRABC Nucleases
AU - Tang, Moon Shong
AU - Lee, Chong soon
AU - Daisy, Richard
AU - Ross, Lisa
AU - Needham-VanDevanter, Donald R.
AU - Hurley, Laurence H.
PY - 1988/2/1
Y1 - 1988/2/1
N2 - The recognition and repair of the helix-stabilizing and relatively nondistortive CC-1065-(N3-adenine)-DNA adduct by UVRABC nuclease has been investigated both in vivo with ϕX174 RFI DNA by a transfection assay and in vitro by a site-directed adduct in a 117 base pair fragment from M13mpl. CC-1065 is a potent antitumor antibiotic produced by Streptomyces zelensis which binds within the minor groove of DNA through N3 of adenine. In contrast to the helix-destabilizing and distortive modifications of DNA caused by ultraviolet light or N-acetoxy-2-(acetylamino)fluorene, CC-1065 increases the melting point of DNA and decreases the S1L nuclease activity. Using a viral DNA-Escherichia coli transfection system, we have found that the uvrA, uvrB, and uvrC genes, which code for the major excision repair proteins for UV- and NAAAF-induced DNA damage, are also involved in the repair of CC-1065-DNA adducts. In contrast, the uvrD gene product, which has been found to be involved in the repair of UV damage, has no effect in repairing CC-1065-DNA adducts. Purified UVRA, UVRB, and UVRC proteins must work in concert to incise the drug-modified ϕX174 RFI DNA. Using a site-directed and multiple CC-1065 modified (Mspl-BstNl) 117 base pair fragment from M13mpl, we have found that UVRABC nuclease incises at the eighth phosphodiester bond on the 5' side of the CC-1065-DNA adduct on the drug-modified strand. The enzymes do not cut the noncovalently modified strand. at low drug binding ratios, of the four CC-1065 binding sites identified in the (Mspl-BstNl) 117 base pair fragment, GATTA*, GGAAA*, GATAA*, and TTTTA* (* indicates the covalently modified adenine), only the adduct at the high-affinity binding site, GATTA*, is incised by the UVRABC nucleases. No difference in the effect of CC-1065 on local DNA structure, as determined by the DNase I cleavage pattern, was evident among these sites. at high drug binding ratios, a fifth drug binding site, AGCTA*, is identified. at this concentration UVRABC nucleases are unable to incise any of these five CC-1065-DNA adducts. The DNA sequence and/or helix-stabilizing effect of multiple adducts may determine the recognition and/or incision of the drug-DNA adduct by UVRABC nuclease. These results are discussed in relation to the structure of the CC-1065-DNA adduct and the effect of drug binding on local DNA structure.
AB - The recognition and repair of the helix-stabilizing and relatively nondistortive CC-1065-(N3-adenine)-DNA adduct by UVRABC nuclease has been investigated both in vivo with ϕX174 RFI DNA by a transfection assay and in vitro by a site-directed adduct in a 117 base pair fragment from M13mpl. CC-1065 is a potent antitumor antibiotic produced by Streptomyces zelensis which binds within the minor groove of DNA through N3 of adenine. In contrast to the helix-destabilizing and distortive modifications of DNA caused by ultraviolet light or N-acetoxy-2-(acetylamino)fluorene, CC-1065 increases the melting point of DNA and decreases the S1L nuclease activity. Using a viral DNA-Escherichia coli transfection system, we have found that the uvrA, uvrB, and uvrC genes, which code for the major excision repair proteins for UV- and NAAAF-induced DNA damage, are also involved in the repair of CC-1065-DNA adducts. In contrast, the uvrD gene product, which has been found to be involved in the repair of UV damage, has no effect in repairing CC-1065-DNA adducts. Purified UVRA, UVRB, and UVRC proteins must work in concert to incise the drug-modified ϕX174 RFI DNA. Using a site-directed and multiple CC-1065 modified (Mspl-BstNl) 117 base pair fragment from M13mpl, we have found that UVRABC nuclease incises at the eighth phosphodiester bond on the 5' side of the CC-1065-DNA adduct on the drug-modified strand. The enzymes do not cut the noncovalently modified strand. at low drug binding ratios, of the four CC-1065 binding sites identified in the (Mspl-BstNl) 117 base pair fragment, GATTA*, GGAAA*, GATAA*, and TTTTA* (* indicates the covalently modified adenine), only the adduct at the high-affinity binding site, GATTA*, is incised by the UVRABC nucleases. No difference in the effect of CC-1065 on local DNA structure, as determined by the DNase I cleavage pattern, was evident among these sites. at high drug binding ratios, a fifth drug binding site, AGCTA*, is identified. at this concentration UVRABC nucleases are unable to incise any of these five CC-1065-DNA adducts. The DNA sequence and/or helix-stabilizing effect of multiple adducts may determine the recognition and/or incision of the drug-DNA adduct by UVRABC nuclease. These results are discussed in relation to the structure of the CC-1065-DNA adduct and the effect of drug binding on local DNA structure.
UR - http://www.scopus.com/inward/record.url?scp=0023846687&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0023846687&partnerID=8YFLogxK
U2 - 10.1021/bi00403a009
DO - 10.1021/bi00403a009
M3 - Article
C2 - 2966637
AN - SCOPUS:0023846687
SN - 0006-2960
VL - 27
SP - 893
EP - 901
JO - Biochemistry
JF - Biochemistry
IS - 3
ER -