TY - JOUR
T1 - Reality gaps in industrial engineering senior design or capstone projects
AU - Ozkan, Desen Sevi
AU - Murzi, Homero Gregorio
AU - Salado, Alejandro
AU - Gewirtz, Chris
N1 - Funding Information:
Dr. Alejandro Salado is an assistant professor of systems science and systems engineering with the Grado Department of Industrial & Systems Engineering at Virginia Tech. His research focuses on unveiling the scientific foundations of systems engineering and using them to improve systems engineering practice. Before joining academia, Alejandro spent over ten years as a systems engineer in the space industry. He is a recipient of the Fabrycky-Blanchard Award for Systems Engineering Research and the Fulbright International Science and Technology Award. Dr. Salado holds a BSc/MSc in electrical engineering from Polytechnic University of Valencia, an MSc in project management and a MSc in electronics engineering from Polytechnic University of Catalonia, the SpaceTech MEng in space systems engineering from Delft University of Technology, and a PhD in systems engineering from the Stevens Institute of Technology. He is a member of INCOSE and a senior member of IEEE and IIE.
Publisher Copyright:
© American Society for Engineering Education, 2018.
PY - 2018/6/23
Y1 - 2018/6/23
N2 - Undergraduate Senior Design or Capstone Projects (SDP) are intended to provide a culminating experience for undergraduate students. In SDP's, students are expected to put into practice their engineering competences to solve a realistic problem. Realism is pursued by setting up boundary conditions that mimic to some extent those found in the corporate world. For example, projects are defined by an external company that acts as a sponsor or client, last between one and two semesters, are carried out in teams, and, in some cases, are vaguely defined. Moreover, students are often requested to complete various stages of the system's life cycle, including formulating the problem, conceptualizing the solution, implementing a solution in part or whole, and presenting the solution to the client. However, while these project conditions provide a decent surrogate of a real industrial problem, students' solutions are purely academic: They lack key elements that any engineering solution to a real problem should have. For example, students' solutions tend to be deterministic, assume seamless implementation and adoption, do not create unintended consequences, and are free of risks. Furthermore, these weaknesses are not identified in the evaluation of projects because assessments remain academic. They focus on evaluating if industrial engineering tools and methods have been properly used, and if the development process described in class has been followed. However, evaluating the value of an engineering solution in the corporate world is driven by the identification of worst- and best-cases, the contextualization of the solution within ranges of expectation, the assessment of impacts of implementing and adopting the solution, and the identification of the solution's potential unintended consequences and resulting risks. In order to contribute to close this gap between industry and academia, we characterize in this paper SDP's in industrial engineering undergraduate programs across the USA. In particular, we identify the aspects of real engineering projects that are captured, and those that are missing, in the problems that students solve, and are exhibited in the solutions they create. Then, we use the results to define a set of guidelines that would contribute to improve the realism of SDP's, both in terms of their problem definition and of the evaluation and assessment of students' solutions.
AB - Undergraduate Senior Design or Capstone Projects (SDP) are intended to provide a culminating experience for undergraduate students. In SDP's, students are expected to put into practice their engineering competences to solve a realistic problem. Realism is pursued by setting up boundary conditions that mimic to some extent those found in the corporate world. For example, projects are defined by an external company that acts as a sponsor or client, last between one and two semesters, are carried out in teams, and, in some cases, are vaguely defined. Moreover, students are often requested to complete various stages of the system's life cycle, including formulating the problem, conceptualizing the solution, implementing a solution in part or whole, and presenting the solution to the client. However, while these project conditions provide a decent surrogate of a real industrial problem, students' solutions are purely academic: They lack key elements that any engineering solution to a real problem should have. For example, students' solutions tend to be deterministic, assume seamless implementation and adoption, do not create unintended consequences, and are free of risks. Furthermore, these weaknesses are not identified in the evaluation of projects because assessments remain academic. They focus on evaluating if industrial engineering tools and methods have been properly used, and if the development process described in class has been followed. However, evaluating the value of an engineering solution in the corporate world is driven by the identification of worst- and best-cases, the contextualization of the solution within ranges of expectation, the assessment of impacts of implementing and adopting the solution, and the identification of the solution's potential unintended consequences and resulting risks. In order to contribute to close this gap between industry and academia, we characterize in this paper SDP's in industrial engineering undergraduate programs across the USA. In particular, we identify the aspects of real engineering projects that are captured, and those that are missing, in the problems that students solve, and are exhibited in the solutions they create. Then, we use the results to define a set of guidelines that would contribute to improve the realism of SDP's, both in terms of their problem definition and of the evaluation and assessment of students' solutions.
UR - http://www.scopus.com/inward/record.url?scp=85051233624&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85051233624&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85051233624
SN - 2153-5965
VL - 2018-June
JO - ASEE Annual Conference and Exposition, Conference Proceedings
JF - ASEE Annual Conference and Exposition, Conference Proceedings
T2 - 125th ASEE Annual Conference and Exposition
Y2 - 23 June 2018 through 27 December 2018
ER -