TY - JOUR
T1 - Real-time Kadanoff-Baym approach to nuclear response functions
AU - Köhler, H. S.
AU - Kwong, N. H.
N1 - Publisher Copyright:
© Published under licence by IOP Publishing Ltd.
PY - 2016/4/12
Y1 - 2016/4/12
N2 - Linear density response functions are calculated for symmetric nuclear matter of normal density by time-evolving two-time Green's functions in real time. Of particular interest is the effect of correlations. The system is therefore initially time-evolved with a collision term calculated in a direct Born approximation until fully correlated. An external time-dependent potential is then applied. The ensuing density fluctuations are recorded to calculate the density response. This method was previously used by Kwong and Bonitz for studying plasma oscillations in a correlated electron gas. The energy-weighted sum-rule for the response function is guaranteed by using conserving self-energy insertions as the method then generates the full vertex-functions. These can alternatively be calculated by solving a Bethe -Salpeter equation as done in works by Bozek et al. The (first order) mean field is derived from a momentum-dependent (non-local) interaction while 2nd order self-energies are calculated using a particle-hole two-body effective (or residual) interaction given by a gaussian local potential. We show results of calculations of the response function S(,q0 ) for q0 = 0.2, 0.4 and 0.8fm -1. Comparison is made with the nucleons being un-correlated i.e. with only the first order mean field included. We discuss the relation of our work with the Landau quasi-particle theory as applied to nuclear systems by Babu and Brown and followers.
AB - Linear density response functions are calculated for symmetric nuclear matter of normal density by time-evolving two-time Green's functions in real time. Of particular interest is the effect of correlations. The system is therefore initially time-evolved with a collision term calculated in a direct Born approximation until fully correlated. An external time-dependent potential is then applied. The ensuing density fluctuations are recorded to calculate the density response. This method was previously used by Kwong and Bonitz for studying plasma oscillations in a correlated electron gas. The energy-weighted sum-rule for the response function is guaranteed by using conserving self-energy insertions as the method then generates the full vertex-functions. These can alternatively be calculated by solving a Bethe -Salpeter equation as done in works by Bozek et al. The (first order) mean field is derived from a momentum-dependent (non-local) interaction while 2nd order self-energies are calculated using a particle-hole two-body effective (or residual) interaction given by a gaussian local potential. We show results of calculations of the response function S(,q0 ) for q0 = 0.2, 0.4 and 0.8fm -1. Comparison is made with the nucleons being un-correlated i.e. with only the first order mean field included. We discuss the relation of our work with the Landau quasi-particle theory as applied to nuclear systems by Babu and Brown and followers.
UR - http://www.scopus.com/inward/record.url?scp=84964800568&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84964800568&partnerID=8YFLogxK
U2 - 10.1088/1742-6596/696/1/012011
DO - 10.1088/1742-6596/696/1/012011
M3 - Conference article
AN - SCOPUS:84964800568
SN - 1742-6588
VL - 696
JO - Journal of Physics: Conference Series
JF - Journal of Physics: Conference Series
IS - 1
M1 - 012011
T2 - 6th Interdisciplinary Conference on Progress in Non-Equilibrium Green's Functions, PNGF 2015
Y2 - 17 August 2015 through 21 August 2015
ER -