Real-Time GPU Based Video Segmentation with Depth Information

Nilangshu Bidyanta, Ali Akoglu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In the context of video segmentation with depth sensor, prior work maps the Metropolis algorithm, a simulated annealing based key routine during segmentation, onto an Nvidia Graphics Processing Unit (GPU) and achieves real-time performance for 320×256 video sequences. However that work utilizes depth information in a very limited manner. This paper presents a new GPU-based method that expands the use of depth information during segmentation and shows the improved segmentation quality over the prior work. In particular, we discuss various ways to restructure the segmentation flow, and evaluate the impact of several design choices on throughput and quality. We introduce a scaling factor for amplifying the interaction strength between two spatially neighboring pixels and increasing the clarity of borderlines. This allows us to reduce the number of required Metropolis iterations by over 50% with the drawback of over-segmentation. We evaluate two design choices to overcome this problem. First, we incorporate depth information into the perceived color difference calculations between two pixels, and show that the interaction strengths between neighboring pixels can be more accurately modeled by incorporating depth information. Second, we pre-process the frames with Bilateral filter instead of Gaussian filter, and show its effectiveness in terms of reducing the difference between similar colors. Both approaches help improve the quality of the segmentation, and the reduction in Metropolis iterations helps improve the throughout from 29 fps to 34 fps for 320×256 video sequences.

Original languageEnglish (US)
Title of host publication2018 IEEE/ACS 15th International Conference on Computer Systems and Applications, AICCSA 2018
PublisherIEEE Computer Society
ISBN (Electronic)9781538691205
DOIs
StatePublished - Jul 2 2018
Externally publishedYes
Event15th IEEE/ACS International Conference on Computer Systems and Applications, AICCSA 2018 - Aqaba, Jordan
Duration: Oct 28 2018Nov 1 2018

Publication series

NameProceedings of IEEE/ACS International Conference on Computer Systems and Applications, AICCSA
Volume2018-November
ISSN (Print)2161-5322
ISSN (Electronic)2161-5330

Conference

Conference15th IEEE/ACS International Conference on Computer Systems and Applications, AICCSA 2018
Country/TerritoryJordan
CityAqaba
Period10/28/1811/1/18

Keywords

  • CUDA
  • GPU
  • depth
  • kinect
  • video segmentation

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Computer Science Applications
  • Hardware and Architecture
  • Signal Processing
  • Control and Systems Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Real-Time GPU Based Video Segmentation with Depth Information'. Together they form a unique fingerprint.

Cite this