TY - JOUR
T1 - Read Mapping and Transcript Assembly
T2 - A Scalable and High-Throughput Workflow for the Processing and Analysis of Ribonucleic Acid Sequencing Data
AU - Peri, Sateesh
AU - Roberts, Sarah
AU - Kreko, Isabella R.
AU - McHan, Lauren B.
AU - Naron, Alexandra
AU - Ram, Archana
AU - Murphy, Rebecca L.
AU - Lyons, Eric
AU - Gregory, Brian D.
AU - Devisetty, Upendra K.
AU - Nelson, Andrew D.L.
N1 - Publisher Copyright:
© Copyright © 2020 Peri, Roberts, Kreko, McHan, Naron, Ram, Murphy, Lyons, Gregory, Devisetty and Nelson.
PY - 2020/1/24
Y1 - 2020/1/24
N2 - Next-generation RNA-sequencing is an incredibly powerful means of generating a snapshot of the transcriptomic state within a cell, tissue, or whole organism. As the questions addressed by RNA-sequencing (RNA-seq) become both more complex and greater in number, there is a need to simplify RNA-seq processing workflows, make them more efficient and interoperable, and capable of handling both large and small datasets. This is especially important for researchers who need to process hundreds to tens of thousands of RNA-seq datasets. To address these needs, we have developed a scalable, user-friendly, and easily deployable analysis suite called RMTA (Read Mapping, Transcript Assembly). RMTA can easily process thousands of RNA-seq datasets with features that include automated read quality analysis, filters for lowly expressed transcripts, and read counting for differential expression analysis. RMTA is containerized using Docker for easy deployment within any compute environment [cloud, local, or high-performance computing (HPC)] and is available as two apps in CyVerse's Discovery Environment, one for normal use and one specifically designed for introducing undergraduates and high school to RNA-seq analysis. For extremely large datasets (tens of thousands of FASTq files) we developed a high-throughput, scalable, and parallelized version of RMTA optimized for launching on the Open Science Grid (OSG) from within the Discovery Environment. OSG-RMTA allows users to utilize the Discovery Environment for data management, parallelization, and submitting jobs to OSG, and finally, employ the OSG for distributed, high throughput computing. Alternatively, OSG-RMTA can be run directly on the OSG through the command line. RMTA is designed to be useful for data scientists, of any skill level, interested in rapidly and reproducibly analyzing their large RNA-seq data sets.
AB - Next-generation RNA-sequencing is an incredibly powerful means of generating a snapshot of the transcriptomic state within a cell, tissue, or whole organism. As the questions addressed by RNA-sequencing (RNA-seq) become both more complex and greater in number, there is a need to simplify RNA-seq processing workflows, make them more efficient and interoperable, and capable of handling both large and small datasets. This is especially important for researchers who need to process hundreds to tens of thousands of RNA-seq datasets. To address these needs, we have developed a scalable, user-friendly, and easily deployable analysis suite called RMTA (Read Mapping, Transcript Assembly). RMTA can easily process thousands of RNA-seq datasets with features that include automated read quality analysis, filters for lowly expressed transcripts, and read counting for differential expression analysis. RMTA is containerized using Docker for easy deployment within any compute environment [cloud, local, or high-performance computing (HPC)] and is available as two apps in CyVerse's Discovery Environment, one for normal use and one specifically designed for introducing undergraduates and high school to RNA-seq analysis. For extremely large datasets (tens of thousands of FASTq files) we developed a high-throughput, scalable, and parallelized version of RMTA optimized for launching on the Open Science Grid (OSG) from within the Discovery Environment. OSG-RMTA allows users to utilize the Discovery Environment for data management, parallelization, and submitting jobs to OSG, and finally, employ the OSG for distributed, high throughput computing. Alternatively, OSG-RMTA can be run directly on the OSG through the command line. RMTA is designed to be useful for data scientists, of any skill level, interested in rapidly and reproducibly analyzing their large RNA-seq data sets.
KW - RNA-seq
KW - bioinformatics
KW - high throughput (-omics) techniques
KW - transcriptomics
KW - workflow
UR - https://www.scopus.com/pages/publications/85079177940
UR - https://www.scopus.com/inward/citedby.url?scp=85079177940&partnerID=8YFLogxK
U2 - 10.3389/fgene.2019.01361
DO - 10.3389/fgene.2019.01361
M3 - Article
AN - SCOPUS:85079177940
SN - 1664-8021
VL - 10
JO - Frontiers in Genetics
JF - Frontiers in Genetics
M1 - 1361
ER -