Reachability calculations for vehicle safety during manned/unmanned vehicle interaction

Jerry Ding, Jonathan Sprinkle, Claire J. Tomlin, S. Shankar Sastry, James L. Paunicka

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

This paper describes an approach based on reachability calculations for ensuring robust operation guarantees in flight maneuver sequences performed by unmanned aerial vehicles under supervision of human operators, with applications to safety-critical scenarios. Using a hybrid system formalism to model the maneuver sequence, the paper devises systematic procedures for designing switching conditions to ensure the properties of safety, target attainability, and invariance, using Hamilton-Jacobi reachability calculations. These calculations lay the foundations for refining or designing protocols for multiple unmanned aerial vehicle and/or manned vehicle interaction. The mathematical foundations necessary are described in order to formulate verification problems on reachability and safety of flight maneuvers, including issues of command latency and disturbance. An example of this formalism is given in the context of automated aerial refueling, to inform unmanned aerial vehicle decisions that avoid unsafe scenarios while achieving mission objectives.

Original languageEnglish (US)
Pages (from-to)138-152
Number of pages15
JournalJournal of Guidance, Control, and Dynamics
Volume35
Issue number1
DOIs
StatePublished - 2012

ASJC Scopus subject areas

  • Aerospace Engineering
  • Applied Mathematics
  • Electrical and Electronic Engineering
  • Control and Systems Engineering
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Reachability calculations for vehicle safety during manned/unmanned vehicle interaction'. Together they form a unique fingerprint.

Cite this