Re-annotation is an essential step in systems biology modeling of functional genomics data

Bart H.J. van den Berg, Fiona M. McCarthy, Susan J. Lamont, Shane C. Burgess

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

One motivation of systems biology research is to understand gene functions and interactions from functional genomics data such as that derived from microarrays. Up-to-date structural and functional annotations of genes are an essential foundation of systems biology modeling. We propose that the first essential step in any systems biology modeling of functional genomics data, especially for species with recently sequenced genomes, is gene structural and functional reannotation. To demonstrate the impact of such re-annotation, we structurally and functionally re-annotated a microarray developed, and previously used, as a tool for disease research. We quantified the impact of this re-annotation on the array based on the total numbers of structural- and functional-annotations, the Gene Annotation Quality (GAQ) score, and canonical pathway coverage. We next quantified the impact of re-annotation on systems biology modeling using a previously published experiment that used this microarray. We show that re-annotation improves the quantity and quality of structural- and functional-annotations, allows a more comprehensive Gene Ontology based modeling, and improves pathway coverage for both the whole array and a differentially expressed mRNA subset. Our results also demonstrate that re-annotation can result in a different knowledge outcome derived from previous published research findings. We propose that, because of this, re-annotation should be considered to be an essential first step for deriving value from functional genomics data.

Original languageEnglish (US)
Article numbere10642
JournalPloS one
Volume5
Issue number5
DOIs
StatePublished - 2010
Externally publishedYes

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Re-annotation is an essential step in systems biology modeling of functional genomics data'. Together they form a unique fingerprint.

Cite this