Ray tracing methods for correcting chromatic aberrations in imaging systems

Dmitry Reshidko, Masatsugu Nakanato, José Sasián

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


The correction of chromatic aberrations is typically performed using aberration formulas or by using real ray tracing. While the use of aberration formulas might be effective for some simple optical systems, it has limitations for complex and fast systems. For this reason chromatic aberration correction is usually accomplished with real ray tracing. However, existing optimization tools in lens design software typically mix the correction of monochromatic and chromatic aberrations by construction of an error function that minimizes both aberrations at the same time. This mixing makes the correction of one aberration type dependent on the correction of the other aberration type. We show two methods to separate the chromatic aberrations correction of a lens system. In the first method we use forward and reverse ray tracing and fictitious nondispersive glasses, to cancel the monochromatic aberration content and allow the ray tracing optimization to focus mainly on the color correction. On the second method we provide the algorithm for an error function that separates aberrations. Furthermore, we also demonstrate how these ray tracing methods can be applied to athermalize an optical system. We are unaware that these simple but effective methods have been already discussed in detail by other authors.

Original languageEnglish (US)
Article number351584
JournalInternational Journal of Optics
StatePublished - 2014

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics


Dive into the research topics of 'Ray tracing methods for correcting chromatic aberrations in imaging systems'. Together they form a unique fingerprint.

Cite this