Rapid porcine lung decellularization using a novel organ regenerative control acquisition bioreactor

Zain Khalpey, Ning Qu, Courtney Hemphill, Anthony V. Louis, Alice S. Ferng, Tiffany G. Son, Katherine Stavoe, Kitsie Penick, Phat L. Tran, John Konhilas, Destiny S. Lagrand, Joe G.N. Garcia

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

To regenerate discarded lungs that would not normally be used for transplant, ex vivo reseeding after decellularization may produce organs suitable for clinical transplantation and therefore close the donor gap. Organ regenerative control acquisition (Harvard Biosciences, Holliston, MA), a novel bioreactor system that simulates physiological conditions, was used to evaluate a method of rapid decellularization. Although most current decellularization methods are 24-72 hours, we hypothesized that perfusing porcine lungs with detergents at higher pressures for less time would yield comparable bioscaffolds suitable for future experimentation. Methods involved perfusion of 1% Triton X-100 (Triton) and 0.1% sodium dodecyl sulfate at varied physiological flow rates. Architecture of native and decellularized lungs was analyzed with hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Dry gas and liquid ventilation techniques were introduced. Our 7 hour decellularization procedure removes nuclear material while maintaining architecture. Bioscaffolds have the microarchitecture for reseeding of stem cells. Hematoxylin and eosin staining suggested removal of nuclear material, whereas SEM and TEM imaging demonstrated total removal of cells with structural architecture preserved. This process can lead to clinical implementation, thereby increasing the availability of human lungs for transplantation.

Original languageEnglish (US)
Pages (from-to)71-77
Number of pages7
JournalASAIO Journal
Volume61
Issue number1
DOIs
StatePublished - Jan 13 2015

Keywords

  • bioreactor
  • decellularization
  • lung
  • porcine
  • scaffold

ASJC Scopus subject areas

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Rapid porcine lung decellularization using a novel organ regenerative control acquisition bioreactor'. Together they form a unique fingerprint.

Cite this