Random Sampling for Distributed Coded Matrix Multiplication

Wei Ting Chang, Ravi Tandon

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Matrix multiplication is a fundamental building block for large scale computations arising in various applications, including machine learning. There has been significant recent interest in using coding to speed up distributed matrix multiplication, that are robust to stragglers (i.e., machines that may perform slower computations). In many scenarios, instead of exact computation, approximate matrix multiplication, i.e., allowing for a tolerable error is also sufficient. Such approximate schemes make use of randomization techniques to speed up the computation process. In this paper, we initiate the study of approximate coded matrix multiplication, and investigate the joint synergies offered by randomization and coding. Specifi-cally, we propose two coded randomized sampling schemes that use (a) codes to achieve a desired recovery threshold and (b) random sampling to obtain approximation of the matrix multiplication. Tradeoffs between the recovery threshold and approximation error obtained through random sampling are investigated for a class of coded matrix multiplication schemes.

Original languageEnglish (US)
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages8187-8191
Number of pages5
ISBN (Electronic)9781479981311
DOIs
StatePublished - May 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: May 12 2019May 17 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
Country/TerritoryUnited Kingdom
CityBrighton
Period5/12/195/17/19

Keywords

  • Coded Distributed Computing
  • Matrix multiplication
  • Random sampling

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Random Sampling for Distributed Coded Matrix Multiplication'. Together they form a unique fingerprint.

Cite this