Abstract
We consider a family of distributions on spatial random partitions that provide a coupling between different models of interest: the ideal Bose gas; the zero-range process; particle clustering; and spatial permutations. These distributions are invariant for a “chain of Chinese restaurants” stochastic process. We obtain results for the distribution of the size of the largest component.
Original language | English (US) |
---|---|
Journal | Electronic Journal of Probability |
Volume | 19 |
DOIs | |
State | Published - 2014 |
Keywords
- (Inhomogeneous) zerorange process
- Bose–Einstein condensation
- Chain of Chinese restaurants
- Heavytailed variables
- Infinitely divisible laws
- Spatial random partitions
- Sums of independent random variables
ASJC Scopus subject areas
- Statistics and Probability
- Statistics, Probability and Uncertainty