TY - JOUR
T1 - Raman spectroscopy study and first-principles calculations of the interaction between nucleic acid bases and carbon nanotubes
AU - Stepanian, Stepan G.
AU - Karachevtsev, Maksym V.
AU - Glamazda, Alexander Yu
AU - Karachevtsev, Victor A.
AU - Adamowicz, L.
PY - 2009/4/16
Y1 - 2009/4/16
N2 - In this work, we have used Raman spectroscopy and quantum chemical methods (MP2 and DFT) to study the interactions between nucleic acid bases (NABs) and single-walled carbon nanotubes (SWCNT). We found that the appearance of the interaction between the nanotubes and the NABs is accompanied by a spectral shift of the high-frequency component of the SWCNT G band in the Raman spectrum to a lower frequency region. The value of this shift varies from 0.7 to 1.3 cm -1 for the metallic nanotubes and from 2.1 to 3.2 cm -1 for the semiconducting nanotubes. Calculations of the interaction energies between the NABs and a fragment of the zigzag(10,0) carbon nanotube performed at the MP2/6-31++G(d,p)[NABs atoms] 163 IG(d) [nanotube atoms] level of theory while accounting for the basis set superposition error during geometry optimization allowed us to order the NABs according to the increasing interaction energy value. The order is: guanine (-67.1 kJ mol -1) > adenine (-59.0 kJ mol -1) > cytosine (-50.3 kJ mol -1) % thymine (-50.2 kJ mol -1) > uracil (-44.2 kJ mol -1). The MP2 equilibrium structures and the interaction energies were used as reference points in the evaluation of the ability of various functionals in the DFT method to predict those structures and energies. We showed that the M05, MPWBlK, and MPW1B95 density functionals are capable of correctly predicting the SWCNT-NAB geometries but not the interaction energies, while the M05-2X functional is capable of correctly predicting both the geometries and the interaction energies.
AB - In this work, we have used Raman spectroscopy and quantum chemical methods (MP2 and DFT) to study the interactions between nucleic acid bases (NABs) and single-walled carbon nanotubes (SWCNT). We found that the appearance of the interaction between the nanotubes and the NABs is accompanied by a spectral shift of the high-frequency component of the SWCNT G band in the Raman spectrum to a lower frequency region. The value of this shift varies from 0.7 to 1.3 cm -1 for the metallic nanotubes and from 2.1 to 3.2 cm -1 for the semiconducting nanotubes. Calculations of the interaction energies between the NABs and a fragment of the zigzag(10,0) carbon nanotube performed at the MP2/6-31++G(d,p)[NABs atoms] 163 IG(d) [nanotube atoms] level of theory while accounting for the basis set superposition error during geometry optimization allowed us to order the NABs according to the increasing interaction energy value. The order is: guanine (-67.1 kJ mol -1) > adenine (-59.0 kJ mol -1) > cytosine (-50.3 kJ mol -1) % thymine (-50.2 kJ mol -1) > uracil (-44.2 kJ mol -1). The MP2 equilibrium structures and the interaction energies were used as reference points in the evaluation of the ability of various functionals in the DFT method to predict those structures and energies. We showed that the M05, MPWBlK, and MPW1B95 density functionals are capable of correctly predicting the SWCNT-NAB geometries but not the interaction energies, while the M05-2X functional is capable of correctly predicting both the geometries and the interaction energies.
UR - http://www.scopus.com/inward/record.url?scp=64849095620&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=64849095620&partnerID=8YFLogxK
U2 - 10.1021/jp810205a
DO - 10.1021/jp810205a
M3 - Article
C2 - 19320448
AN - SCOPUS:64849095620
SN - 1089-5639
VL - 113
SP - 3621
EP - 3629
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 15
ER -